Ab initio study of conformational properties of (Z,Z)-, (E,Z)- and (E,E)-cycloocta-1,3-dienes

被引:4
作者
Yavari, I
Kabiri-Fard, H
Moradi, S
机构
[1] Univ Tarbiat Modarres, Dept Chem, Tehran, Iran
[2] Islamic Azad Univ, Dept Chem, Tehran, Iran
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 2003年 / 623卷
关键词
medium rings; stereochemistry; molecular modelling; conformational analysis; ab initio calculations;
D O I
10.1016/S0166-1280(02)00714-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ab initio calculations at HF/6-31G* and B3LYP/6-31G* levels of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the three geometrical isomers of cycloocta-1,3-diene 1-3. The twist-boat-chair (1-TBC) conformation of the (ZZ)-isomer 1, with C-2 symmetry, is calculated to be slightly more stable than the twist-boat (1-TB, C-1) geometry by 3.2 kJ mol(-1). Interconversion between 1-TBC and 1-TB conformations takes place via the C-2 symmetric transition state which is 49.4 kJ mol(-1) above 1-TBC form. Degenerate interconversion of 1-TB with itself can take place via C-2 symmetric 1-boat or half-chair (1-HC, C-s). The calculated energy barrier for these processes are 30.1 and 51.3 kJ mol(-1) respectively. The unsymmetrical boat-chair (2-BC) conformation of the (E,Z)-isomer 2 is calculated to be 19.9 U mol(-1) above the unsymmetrical twist-chair (2-TC) form. The calculated energy barrier for interconversion of 2-BC and 2-TC conformations is 50.0 kJ mol(-1), while the barrier for swiveling of the trans double bond through the bridge is 166.8 U mol(-1). The unsymmetrical 3-twist conformation of (E,E)-isomer 3 is calculated to be the most stable form. The calculated energy barrier for ring inversion of the 3-twist conformation via C-s symmetric 3-chair geometry, is 73.4 kJ mol (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 28 条
[1]  
ANET FAL, 1975, TETRAHEDRON LETT, V16, P1567
[2]  
ANET FAL, 1978, J AM CHEM SOC, V100, P7818
[3]  
BARMHAM J, 1989, J CHEM SOC CHEM COMM, P29
[4]  
BATICH C, 1972, J ELECT SPECTROSC RE, P333
[5]  
BAUMAN TO, 1989, CROAT CHEM ACTA, V62, P227
[6]  
BRAUDE EA, 1954, CHEM IND-LONDON, P1557
[7]   PROTON NMR SPECTRA OF CYCLOPENTADIENE, 1,3-CYCLOHEXADIENE, 1,3-CYCLOOCTADIENE, AND 1,2-DIHYDRONAPHTHALENE [J].
COOPER, MA ;
ELLEMAN, DD ;
PEARCE, CD ;
MANATT, SL .
JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (06) :2343-&
[8]   CYCLIC POLYOLEFINS .40. CIS-CIS-1,3-CYCLOOCTADIENE AND CIS-TRANS-1,3-CYCLOOCTADIENE FROM CYCLOOCTEN-3-YLDIMETHYLAMINE [J].
COPE, AC ;
BUMGARDNER, CL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1956, 78 (12) :2812-2815
[9]   BASE-CATALYZED ISOMERIZATION OF MEDIUM RING DIENES AND TRIENES [J].
DEVAPRABHAKARA, D ;
CARDENAS, CG ;
GARDNER, PD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1963, 85 (10) :1553-&
[10]   LOCATION OF TRANSITION-STATES IN REACTION-MECHANISMS [J].
DEWAR, MJS ;
HEALY, EF ;
STEWART, JJP .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1984, 80 :227-233