In situ microscopy of the self-assembly of branched nanocrystals in solution

被引:95
作者
Sutter, Eli [1 ]
Sutter, Peter [2 ]
Tkachenko, Alexei V. [3 ]
Krahne, Roman [4 ]
de Graaf, Joost [5 ]
Arciniegas, Milena [4 ]
Manna, Liberato [4 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[4] IIT, Dept Nanochem, Via Morego 30, IT-16163 Genoa, Italy
[5] Univ Stuttgart, ICP, Fac Math & Phys 8, Allmandring 3, D-70569 Stuttgart, Germany
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
关键词
CRYSTAL-NUCLEATION; HARD-SPHERE; GROWTH; SUPERLATTICES;
D O I
10.1038/ncomms11213
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.
引用
收藏
页数:7
相关论文
共 37 条
  • [1] Prediction of absolute crystal-nucleation rate in hard-sphere colloids
    Auer, S
    Frenkel, D
    [J]. NATURE, 2001, 409 (6823) : 1020 - 1023
  • [2] Brinker CJ, 1999, ADV MATER, V11, P579, DOI 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO
  • [3] 2-R
  • [4] Onset of heterogeneous crystal nucleation in colloidal suspensions
    Cacciuto, A
    Auer, S
    Frenkel, D
    [J]. NATURE, 2004, 428 (6981) : 404 - 406
  • [5] Magnetic superlattices and their nanoscale phase transition effects
    Cheon, J
    Park, JI
    Choi, JS
    Jun, YW
    Kim, S
    Kim, MG
    Kim, YM
    Kim, YJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (09) : 3023 - 3027
  • [6] Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics
    Choi, Ji-Hyuk
    Fafarman, Aaron T.
    Oh, Soong Ju
    Ko, Dong-Kyun
    Kim, David K.
    Diroll, Benjamin T.
    Muramoto, Shin
    Gillen, J. Greg
    Murray, Christopher B.
    Kagan, Cherie R.
    [J]. NANO LETTERS, 2012, 12 (05) : 2631 - 2638
  • [7] Nanocrystal superlattices
    Collier, CP
    Vossmeyer, T
    Heath, JR
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 : 371 - 404
  • [8] Charge separation in Pt-decorated CdSe@CdS octapod nanocrystals
    Conca, Erika
    Aresti, Mauro
    Saba, Michele
    Casula, Maria Francesca
    Quochi, Francesco
    Mula, Guido
    Loche, Danilo
    Kim, Mee Rahn
    Manna, Liberato
    Corrias, Anna
    Mura, Andrea
    Bongiovanni, Giovanni
    [J]. NANOSCALE, 2014, 6 (04) : 2238 - 2243
  • [9] Predictive Self-Assembly of Polyhedra into Complex Structures
    Damasceno, Pablo F.
    Engel, Michael
    Glotzer, Sharon C.
    [J]. SCIENCE, 2012, 337 (6093) : 453 - 457
  • [10] Principles of crystal nucleation and growth
    De Yoreo, JJ
    Vekilov, PG
    [J]. BIOMINERALIZATION, 2003, 54 : 57 - 93