Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond

被引:80
作者
Twamley, J. [1 ]
Barrett, S. D. [1 ,2 ,3 ]
机构
[1] Macquarie Univ, Ctr Quantum Comp Technol, Sydney, NSW 2109, Australia
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2BZ, England
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 24期
关键词
PERSISTENT-CURRENT QUBIT;
D O I
10.1103/PhysRevB.81.241202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Circuit-QED has demonstrated very strong coupling between light and matter, and has the potential to engineer large quantum devices. Hybrid designs have been proposed which couple large ensembles of atomic and molecular systems to the superconducting resonator. We show that one can achieve an effective strong coupling between light and matter for much smaller ensembles (and even a single electronic spin), through the use of an interconnecting quantum system: in our case a persistent current qubit. Using this interconnect we show that one can effectively magnify the coupling strength between the light and matter by over five orders of magnitude g similar to 7 Hz -> 100 kHz and enter a regime where a single nitrogen-vacancy (NV) electronic spin can shift the cavity resonance line by over similar to 20 linewidths. With such strong coupling between an individual electronic spin in an NV and the light in the resonator, one has the potential build devices where the associated NV nuclear spins can be strongly coupled over centimeters via the superconducting bus.
引用
收藏
页数:4
相关论文
共 22 条
[1]   Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator [J].
Abdumalikov, Abdufarrukh A., Jr. ;
Astafiev, Oleg ;
Nakamura, Yasunobu ;
Pashkin, Yuri A. ;
Tsai, JawShen .
PHYSICAL REVIEW B, 2008, 78 (18)
[2]   A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators [J].
Andre, A. ;
Demille, D. ;
Doyle, J. M. ;
Lukin, M. D. ;
Maxwell, S. E. ;
Rabl, P. ;
Schoelkopf, R. J. ;
Zoller, P. .
NATURE PHYSICS, 2006, 2 (09) :636-642
[3]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[4]   Optimized dynamical decoupling in a model quantum memory [J].
Biercuk, Michael J. ;
Uys, Hermann ;
VanDevender, Aaron P. ;
Shiga, Nobuyasu ;
Itano, Wayne M. ;
Bollinger, John J. .
NATURE, 2009, 458 (7241) :996-1000
[5]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[6]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[7]   Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems [J].
Imamoglu, Atac .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[8]  
MARCOS D, ARXIV10014048
[9]   Josephson persistent-current qubit [J].
Mooij, JE ;
Orlando, TP ;
Levitov, L ;
Tian, L ;
van der Wal, CH ;
Lloyd, S .
SCIENCE, 1999, 285 (5430) :1036-1039
[10]   Fabrication technology of and symmetry breaking in superconducting quantum circuits [J].
Niemczyk, T. ;
Deppe, F. ;
Mariantoni, M. ;
Menzel, E. P. ;
Hoffmann, E. ;
Wild, G. ;
Eggenstein, L. ;
Marx, A. ;
Gross, R. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2009, 22 (03)