Spectral-Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images

被引:203
作者
Zhang, Hongyan [1 ]
Zhai, Han [1 ]
Zhang, Liangpei [1 ]
Li, Pingxiang [1 ]
机构
[1] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 06期
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI); sparse representation; spectral clustering; subspace clustering; ALGORITHM; CLASSIFICATION; RECOVERY; CUTS;
D O I
10.1109/TGRS.2016.2524557
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Clustering for hyperspectral images (HSIs) is a very challenging task due to its inherent complexity. In this paper, we propose a novel spectral-spatial sparse subspace clustering (S4C) algorithm for hyperspectral remote sensing images. First, by treating each kind of land-cover class as a subspace, we introduce the sparse subspace clustering (SSC) algorithm to HSIs. Then, considering the spectral and spatial properties of HSIs, the high spectral correlation and rich spatial information of the HSIs are taken into consideration in the SSC model to obtain a more accurate coefficient matrix, which is used to build the adjacent matrix. Finally, spectral clustering is applied to the adjacent matrix to obtain the final clustering result. Several experiments were conducted to illustrate the performance of the proposed S4C algorithm.
引用
收藏
页码:3672 / 3684
页数:13
相关论文
共 52 条
[1]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[2]  
[Anonymous], 1999, REMOTE SENSING DIGIT
[3]  
[Anonymous], 2013, PATTERN RECOGN, DOI DOI 10.1007/978-1-4757-0450-1
[4]  
[Anonymous], 2006, P 23 INT C MACH LEAR
[5]  
Ball GH., 1965, ISODATA NOVEL METHOD
[6]   An augmented Lagrangianbased approach to the Oseen problem [J].
Benzi, Michele ;
Olshanskii, Maxim A. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (06) :2095-2113
[7]   Graph cuts and efficient N-D image segmentation [J].
Boykov, Yuri ;
Funka-Lea, Gareth .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 70 (02) :109-131
[8]   FUZZY HIERARCHICAL ANALYSIS [J].
BUCKLEY, JJ .
FUZZY SETS AND SYSTEMS, 1985, 17 (03) :233-247
[9]   Spectral Curvature Clustering (SCC) [J].
Chen, Guangliang ;
Lerman, Gilad .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 81 (03) :317-330
[10]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916