On the Lp-theory for second-order elliptic operators in divergence form with complex coefficients

被引:0
作者
ter Elst, A. F. M. [1 ]
Haller-Dintelmann, R. [2 ]
Rehberg, J. [3 ]
Tolksdorf, P. [4 ]
机构
[1] Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New Zealand
[2] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[3] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[4] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
关键词
Divergence form operators on open sets; p-ellipticity; Sectorial operators; Analytic semi-groups; Maximal regularity; Reverse Holder inequalities; Gaussian estimates; De Giorgi estimates; FOURIER MULTIPLIER THEOREMS; L-INFINITY-CONTRACTIVITY; RIESZ TRANSFORMS; SEMI-GROUPS; REGULARITY; DISSIPATIVITY; SOBOLEV; EQUATIONS; CALCULUS; KERNELS;
D O I
10.1007/s00028-021-00711-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a complex, elliptic coefficient function we investigate for which values of p the corresponding second-order divergence form operator, complemented with Dirichlet, Neumann or mixed boundary conditions, generates a strongly continuous semigroup on L-p (Omega). Additional properties like analyticity of the semigroup, H-infinity-calculus and maximal regularity are also discussed. Finally, we prove a perturbation result for real coefficients that gives the whole range of p's for small imaginary parts of the coefficients. Our results are based on the recent notion of p-ellipticity, reverse Holder inequalities and Gaussian estimates for the real coefficients.
引用
收藏
页码:3963 / 4003
页数:41
相关论文
共 48 条
[1]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[2]  
[Anonymous], JAN, DOI DOI 10.1016/J.JVS.2018.11.029
[3]  
ARENDT W, 1997, J OPERAT THEOR, V38, P87
[4]   Regularity theorems and heat kernel for elliptic operators [J].
Auscher, P .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :284-296
[5]  
Auscher P, 2000, POTENTIAL ANAL, V12, P169, DOI 10.1023/A:1008642508461
[6]   The square root problem for second-order, divergence form operators with mixed boundary conditions on L p [J].
Auscher, Pascal ;
Badr, Nadine ;
Haller-Dintelmann, Robert ;
Rehberg, Joachim .
JOURNAL OF EVOLUTION EQUATIONS, 2015, 15 (01) :165-208
[7]   Interpolation Theory for Sobolev Functions with Partially Vanishing Trace on Irregular Open Sets [J].
Bechtel, Sebastian ;
Egert, Moritz .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) :2733-2781
[8]  
Blunck S, 2003, REV MAT IBEROAM, V19, P919
[9]   Convexity of power functions and bilinear embedding for divergence-form operators with complex coefficients [J].
Carbonaro, Andrea ;
Dragicevic, Oliver .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (10) :3175-3221
[10]   Criterion for the Lp-dissipativity of second order differential operators with complex coefficients [J].
Cialdea, A ;
Maz'ya, V .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1067-1100