Enhanced Thermal Stability of W-Ni-Al2O3 Cermet-Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors

被引:167
作者
Cao, Feng [1 ,2 ]
Kraemer, Daniel [3 ]
Sun, Tianyi [1 ,2 ,4 ]
Lan, Yucheng [1 ,2 ]
Chen, Gang [3 ]
Ren, Zhifeng [1 ,2 ]
机构
[1] Univ Houston, Dept Phys, Houston, TX 77204 USA
[2] Univ Houston, TcSUH, Houston, TX 77204 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
关键词
solar absorbers; cermet; solar absorptance; thermal emittance; spectral selectivity;
D O I
10.1002/aenm.201401042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar thermal technologies such as solar hot water and concentrated solar power trough systems rely on spectrally selective solar absorbers. These solar absorbers are designed to efficiently absorb the sunlight while suppressing re-emission of infrared radiation at elevated temperatures. Efforts for the development of such solar absorbers must not only be devoted to their spectral selectivity but also to their thermal stability for high temperature applications. Here, selective solar absorbers based on two cermet layers are fabricated on mechanically polished stainless steel substrates using a magnetron sputtering technique. The targeted operating temperature is 500-600 degrees C. A detrimental change in the morphology, phase, and optical properties is observed if the cermet layers are deposited on a stainless steel substrate with a thin nickel adhesion layer, which is due to the diffusion of iron atoms from the stainless steel into the cermet layer forming a FeWO4 phase. In order to improve thermal stability and reduce the infrared emittance, tungsten is found to be a good candidate for the infrared reflector layer due to its excellent thermal stability and low infrared emittance. A stable solar absorptance of approximate to 0.90 is demonstrated, with a total hemispherical emittance of 0.15 at 500 degrees C.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature [J].
Antonaia, A. ;
Castaldo, A. ;
Addonizio, M. L. ;
Esposito, S. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (10) :1604-1611
[2]   Structure and optical properties of Ag-Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering [J].
Barshilia, Harish C. ;
Kumar, Prashant ;
Rajam, K. S. ;
Biswas, A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (07) :1707-1715
[3]   A review of cermet-based spectrally selective solar absorbers [J].
Cao, Feng ;
McEnaney, Kenneth ;
Chen, Gang ;
Ren, Zhifeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1615-1627
[4]   Low-Temperature Annealing Induced Amorphization in Nanocrystalline NiW Alloy Films [J].
Chen, Z. Q. ;
Wang, F. ;
Huang, P. ;
Lu, T. J. ;
Xu, K. W. .
JOURNAL OF NANOMATERIALS, 2013, 2013
[5]   Improvement of thermal stability in the solar selective absorbing Mo-Al2O3 coating [J].
Cheng, Jiushan ;
Wang, Cong ;
Wang, Wenwen ;
Du, Xinkang ;
Liu, Yu ;
Xue, Yafei ;
Wang, Tianmin ;
Chen, Buliang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 109 :204-208
[6]   Microstructure and spectral selectivity of Mo-Al2O3 solar selective absorbing coatings after annealing [J].
Du Xinkang ;
Wang Cong ;
Wang Tiantnin ;
Zhou Long ;
Chen Buliang ;
Ru Ning .
THIN SOLID FILMS, 2008, 516 (12) :3971-3977
[7]   Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature [J].
Esposito, S. ;
Antonaia, A. ;
Addonizio, M. L. ;
Aprea, S. .
THIN SOLID FILMS, 2009, 517 (21) :6000-6006
[8]   High performance sputtered Ni:SiO2 composite solar absorber surfaces [J].
Farooq, M ;
Green, AA ;
Hutchins, MG .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 54 (1-4) :67-73
[9]   CU-SIO2/CU-CERMET SELECTIVE ABSORBERS FOR SOLAR PHOTOTHERMAL CONVERSION [J].
GARNICH, F ;
SAILER, E .
SOLAR ENERGY MATERIALS, 1990, 20 (1-2) :81-89
[10]  
Kennedy C. E., 2002, NATIONAL RENEWABLE E