Population Genomics of Transposable Elements in Drosophila

被引:109
作者
Barron, Maite G. [1 ]
Fiston-Lavier, Anna-Sophie [2 ]
Petrov, Dmitri A. [3 ]
Gonzalez, Josefa [1 ]
机构
[1] Univ Pompeu Fabra, CSIC, Inst Evolutionary Biol, Barcelona 08003, Spain
[2] Univ Montpellier 2, CNRS, UMR5554, Inst Sci Evolut ISEM, F-34090 Montpellier, France
[3] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
来源
ANNUAL REVIEW OF GENETICS, VOL 48 | 2014年 / 48卷
关键词
evolutionary models; next-generation sequencing; adaptation; CIS-REGULATORY ELEMENTS; ECTOPIC RECOMBINATION; INSECTICIDE RESISTANCE; LTR RETROTRANSPOSONS; NATURAL-POPULATIONS; COPY NUMBER; DNA LOSS; MELANOGASTER; EVOLUTION; SEQUENCE;
D O I
10.1146/annurev-genet-120213-092359
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Studies of the population dynamics of transposable elements (TEs) in Drosophila melanogaster indicate that consistent forces are affecting TEs independently of their modes of transposition and regulation. New sequencing technologies enable biologists to sample genomes at an unprecedented scale in order to quantify genome-wide polymorphism for annotated and novel TE insertions. In this review, we first present new insights gleaned from high-throughput data for population genomics studies of D. melanogaster. We then consider the latest population genomics models for TE evolution and present examples of functional evidence revealed by genome-wide studies of TE population dynamics in D. melanogaster. Although most of the TE insertions are deleterious or neutral, some TE insertions increase the fitness of the individual that carries them and play a role in genome adaptation.
引用
收藏
页码:561 / 581
页数:21
相关论文
共 50 条
[31]   Population genomics of transposable element activation in the highly repressive genome of an agricultural pathogen [J].
Pereira, Danilo ;
Oggenfuss, Ursula ;
McDonald, Bruce A. ;
Croll, Daniel .
MICROBIAL GENOMICS, 2021, 7 (08)
[32]   Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus [J].
Wallau, Gabriel Luz ;
Capy, Pierre ;
Loreto, Elgion ;
Hua-Van, Aurelie .
BMC GENOMICS, 2014, 15
[33]   A Snapshot of Histone Modifications within Transposable Elements in Drosophila Wild Type Strains [J].
Rebollo, Rita ;
Horard, Beatrice ;
Begeot, Flora ;
Delattre, Marion ;
Gilson, Eric ;
Vieira, Cristina .
PLOS ONE, 2012, 7 (09)
[34]   Species-specific chromatin landscape determines how transposable elements shape genome evolution [J].
Huang, Yuheng ;
Shukla, Harsh ;
Lee, Yuh Chwen G. .
ELIFE, 2022, 11
[35]   Tempo and Mode of Transposable Element Activity in Drosophila [J].
Kofler, Robert ;
Nolte, Viola ;
Schloetterer, Christian .
PLOS GENETICS, 2015, 11 (07)
[36]   Characterization of new hAT transposable elements in 12 Drosophila genomes [J].
Ortiz, Mauro de Freitas ;
Silva Loreto, Elgion Lucio .
GENETICA, 2009, 135 (01) :67-75
[37]   Stress does not induce a general transcription of transposable elements in Drosophila [J].
Mombach, Daniela Moreira ;
Freire da Fontoura Gomes, Tiago Minuzzi ;
Silva Loreto, Elgion Lucio .
MOLECULAR BIOLOGY REPORTS, 2022, 49 (09) :9033-9040
[38]   Transposable elements in yeasts [J].
Bleykasten-Grosshans, Claudine ;
Neuveglise, Cecile .
COMPTES RENDUS BIOLOGIES, 2011, 334 (8-9) :679-686
[39]   Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila [J].
Rech, Gabriel E. ;
Radio, Santiago ;
Guirao-Rico, Sara ;
Aguilera, Laura ;
Horvath, Vivien ;
Green, Llewellyn ;
Lindstadt, Hannah ;
Jamilloux, Veronique ;
Quesneville, Hadi ;
Gonzalez, Josefa .
NATURE COMMUNICATIONS, 2022, 13 (01)
[40]   Transposable elements inDrosophila [J].
Merel, Vincent ;
Boulesteix, Matthieu ;
Fablet, Marie ;
Vieira, Cristina .
MOBILE DNA, 2020, 11 (01)