Real-time atomistic observation of structural phase transformations in individual hafnia nanorods

被引:60
作者
Hudak, Bethany M. [1 ]
Depner, Sean W. [2 ]
Waetzig, Gregory R. [3 ,4 ]
Talapatra, Anjana [4 ]
Arroyave, Raymundo [4 ]
Banerjee, Sarbajit [3 ,4 ]
Guiton, Beth S. [1 ,5 ]
机构
[1] Univ Kentucky, Dept Chem, 505 Rose St, Lexington, KY 40506 USA
[2] SUNY Buffalo, Dept Chem, Nat Sci Complex 359, Buffalo, NY 14260 USA
[3] Texas A&M Univ, Dept Chem, 3255 TAMU,580 Ross St, College Stn, TX 77843 USA
[4] Texas A&M Univ, Dept Mat Sci & Engn, 575 Ross St, College Stn, TX 77843 USA
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
TETRAGONAL HFO2; SIZE; CRYSTALLIZATION; THERMODYNAMICS; STABILIZATION; INTEGRATION; KINETICS; ROUTE; FILMS; ZRO2;
D O I
10.1038/ncomms15316
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000 degrees C from bulk. When the nanorod is annealed, we observe with atomic-scale resolution the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.
引用
收藏
页数:9
相关论文
共 55 条
  • [31] A novel reduction-oxidation synthetic route for hafnia
    Matovic, Branko
    Pantic, Jelena
    Lukovic, Jelena
    Cebela, Maria
    Dmitrovic, Svetlana
    Mirkovic, Miljana
    Prekaj, Marija
    [J]. CERAMICS INTERNATIONAL, 2016, 42 (01) : 615 - 620
  • [32] HIGH-PRECISION SAMPLING FOR BRILLOUIN-ZONE INTEGRATION IN METALS
    METHFESSEL, M
    PAXTON, AT
    [J]. PHYSICAL REVIEW B, 1989, 40 (06): : 3616 - 3621
  • [33] Incipient Ferroelectricity in Al-Doped HfO2 Thin Films
    Mueller, Stefan
    Mueller, Johannes
    Singh, Aarti
    Riedel, Stefan
    Sundqvist, Jonas
    Schroeder, Uwe
    Mikolajick, Thomas
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (11) : 2412 - 2417
  • [34] Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide Systems
    Navrotsky, Alexandra
    [J]. CHEMPHYSCHEM, 2011, 12 (12) : 2207 - 2215
  • [35] A PERSPECTIVE ON MARTENSITIC NUCLEATION
    OLSON, GB
    COHEN, M
    [J]. ANNUAL REVIEW OF MATERIALS SCIENCE, 1981, 11 : 1 - 30
  • [36] Atomic and electronic structure of amorphous and crystalline hafnium oxide: X-ray photoelectron spectroscopy and density functional calculations
    Perevalov, T. V.
    Gritsenko, V. A.
    Erenburg, S. B.
    Badalyan, A. M.
    Wong, Hei
    Kim, C. W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
  • [37] High dielectric constant oxides
    Robertson, J
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2004, 28 (03) : 265 - 291
  • [38] High-K materials and metal gates for CMOS applications
    Robertson, John
    Wallace, Robert M.
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2015, 88 : 1 - 41
  • [39] CRYSTAL STRUCTURE OF MONOCLINIC HAFNIA AND COMPARISON WITH MONOCLINIC ZIRCONIA
    RUH, R
    CORFIELD, PW
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1970, 53 (03) : 126 - +
  • [40] Martensitic phase transformation of isolated HfO2, ZrO2, and HfxZr1-xO2 (0 < x < 1) nanocrystals
    Tang, J
    Zhang, T
    Zoogman, P
    Fabbri, J
    Chan, SW
    Zhu, YM
    Brus, LE
    Steigerwald, ML
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (10) : 1595 - 1602