Investigation of memory effect in atmospheric pressure dielectric barrier discharge in nitrogen with small oxygen or nitric oxide addition

被引:27
作者
Tyl, C. [1 ]
Lin, X. [1 ]
Bouzidi, M. C. [1 ]
Dap, S. [1 ]
Caquineau, H. [1 ]
Segur, P. [1 ]
Gherardi, N. [1 ]
Naude, N. [1 ]
机构
[1] Univ Toulouse, UPS, LAPLACE, CNRS,INPT, 118 Route Narbonne, F-31062 Toulouse, France
关键词
homogeneous discharge; dielectric barrier discharge; associative ionization; metastable species; seed electrons; Townsend discharge; memory effect; GLOW-DISCHARGE; SURFACE-TREATMENT; PLASMA; PHYSICS; MODEL; ADMIXTURES; DEPOSITION; TRANSITION; N-2;
D O I
10.1088/1361-6463/aad472
中图分类号
O59 [应用物理学];
学科分类号
摘要
This work focuses on the investigation of the memory effect origin in atmospheric pressure Townsend discharges in nitrogen/oxidizing gas mixtures. For this purpose, an experimental approach is used on a plane-to-plane dielectric barrier discharge, using short exposure time photographs of the discharge with interference filters, synchronized with the discharge current. A segmented electrode into eight strips allows to correlate the discharge current and light emissions from different species in time and space (position along the gas flow). The results highlight the occurence of a memory effect involving oxidizing species when an oxidizing gas is added to nitrogen. A comparison of the discharge for different gas gaps, and the parallel drawn with a numerical 1-D model in pure nitrogen, suggests the importance and the predominance of this memory effect compared to the secondary electron emission by N-2(A(3)Sigma(+)(u)) which was considered to be the dominant mechanism up to now.
引用
收藏
页数:10
相关论文
共 36 条
[1]   The role of neutral metastable N-2(A) molecules in the breakdown probability and glow discharge in nitrogen [J].
Bosan, DA ;
Jovanovic, TV ;
Krmpotic, DM .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (22) :3096-3098
[2]   Maximization of the working domain of an Atmospheric Pressure Townsend Discharge (APTD) using a current-source static converter [J].
Bouzidi, M. C. ;
Bonnin, X. ;
Naude, N. ;
Piquet, H. ;
Belinger, A. ;
Gherardi, N. .
13TH HIGH-TECH PLASMA PROCESSES CONFERENCE (HTPP-2014), 2014, 550
[3]   Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary regime [J].
Brandenburg, R ;
Maiorov, VA ;
Golubovskii, YB ;
Wagner, HE ;
Behnke, J ;
Behnke, JF .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (13) :2187-2197
[4]   Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments [J].
Brandenburg, Ronny .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (05)
[5]   Foundations of atmospheric pressure non-equilibrium plasmas [J].
Bruggeman, Peter J. ;
Iza, Felipe ;
Brandenburg, Ronny .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (12)
[6]   Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing [J].
Cernak, M. ;
Kovacik, D. ;
Rahel, J. ;
St'ahel, P. ;
Zahoranova, A. ;
Kubincova, J. ;
Toth, A. ;
Cernakova, L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
[7]   N2(A 3Σu+) density measurement in a dielectric barrier discharge in N2 and N2 with small O2 admixtures [J].
Dilecce, G. ;
Ambrico, P. F. ;
De Benedictis, S. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2007, 16 (03) :511-522
[8]   A model for plasma modification of polypropylene using atmospheric pressure discharges [J].
Dorai, R ;
Kushner, MJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (06) :666-685
[9]   UV EXCIMER RADIATION FROM DIELECTRIC-BARRIER DISCHARGES [J].
ELIASSON, B ;
KOGELSCHATZ, U .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1988, 46 (04) :299-303
[10]   Applied plasma medicine [J].
Fridman, Gregory ;
Friedman, Gary ;
Gutsol, Alexander ;
Shekhter, Anatoly B. ;
Vasilets, Victor N. ;
Fridman, Alexander .
PLASMA PROCESSES AND POLYMERS, 2008, 5 (06) :503-533