Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation

被引:74
作者
Sosa, Akari Narayama [1 ]
de Santiago, Francisco [1 ]
Miranda, Alvaro [1 ]
Trejo, Alejandro [1 ]
Salazar, Fernando [1 ]
Perez, Luis Antonio [2 ]
Cruz-Irisson, Miguel [1 ]
机构
[1] Inst Politecn Nacl, ESIME Culhuacan, Av Santa Ana 1000, Mexico City 04440, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico
关键词
2D materials; Density functional theory; Germanene; Hydrogen storage; Renewable energy storage; Decoration; DECORATED POROUS GRAPHENE; 1ST PRINCIPLES; DISSOCIATIVE ADSORPTION; MAGNETIC-PROPERTIES; CARBON; 1ST-PRINCIPLES; FULLERENE; CAPACITY; PROGRESS; ENERGY;
D O I
10.1016/j.ijhydene.2020.04.129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we have performed density functional theory-based calculations to study the adsorption of H-2 molecules on germanene decorated with alkali atoms (AM) and transition metal atoms (TM). The cohesive energy indicates that interaction between AM (TM) atoms and germanene is strong. The values of the adsorption energies of H-2 molecules on the AM or TM atoms are in the range physisorption. The K-decorated germanene has the largest storage capacity, being able to bind up to six H-2 molecules, whereas the Au and Na atoms adsorbed five and four H-2 molecules, respectively. Li and Ag atoms can bind a maximum of three H-2 molecules, while Cu-decorated germanene only adsorbed one H-2 molecule. Formation energies show that all the studied cases of H-2 molecules adsorbed on AM and TM atom-decorated germanene are energetically favorable. These results indicate that decorated germanene can serve as a hydrogen storage system. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20245 / 20256
页数:12
相关论文
共 104 条
  • [71] Hydrogen adsorption in different carbon nanostructures
    Panella, B
    Hirscher, M
    Roth, S
    [J]. CARBON, 2005, 43 (10) : 2209 - 2214
  • [72] Adsorption of alkali metal atoms on germanene: A first-principles study
    Pang, Qing
    Zhang, Chun-ling
    Li, Long
    Fu, Zhi-qiang
    Wei, Xiu-mei
    Song, Yu-ling
    [J]. APPLIED SURFACE SCIENCE, 2014, 314 : 15 - 20
  • [73] First-principles study of the interaction of hydrogen molecular on Na-adsorbed graphene
    Pantha, Nurapati
    Belbase, Kamal
    Adhikari, Narayan Prasad
    [J]. APPLIED NANOSCIENCE, 2015, 5 (04) : 393 - 402
  • [74] Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
  • [75] Fullerene nanocage capacity for hydrogen storage
    Pupysheva, Olga V.
    Farajian, Arnir A.
    Yakobson, Boris I.
    [J]. NANO LETTERS, 2008, 8 (03) : 767 - 774
  • [76] Hydrogen storage in carbon nanostructures via spillover
    Pyle, Darryl S.
    Gray, E. MacA.
    Webb, C. J.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (42) : 19098 - 19113
  • [77] Ca and K decorated germanene as hydrogen storage: An ab initio study
    Rojas, Kurt Irvin M.
    Villagracia, Al Rey C.
    Moreno, Joaquin Lorenzo
    David, Melanie
    Arboleda, Nelson B., Jr.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (09) : 4393 - 4400
  • [78] Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene
    Sahin, H.
    Peeters, F. M.
    [J]. PHYSICAL REVIEW B, 2013, 87 (08)
  • [79] Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations
    Sahin, H.
    Cahangirov, S.
    Topsakal, M.
    Bekaroglu, E.
    Akturk, E.
    Senger, R. T.
    Ciraci, S.
    [J]. PHYSICAL REVIEW B, 2009, 80 (15)
  • [80] Hydrogen-storage materials for mobile applications
    Schlapbach, L
    Züttel, A
    [J]. NATURE, 2001, 414 (6861) : 353 - 358