Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation

被引:74
作者
Sosa, Akari Narayama [1 ]
de Santiago, Francisco [1 ]
Miranda, Alvaro [1 ]
Trejo, Alejandro [1 ]
Salazar, Fernando [1 ]
Perez, Luis Antonio [2 ]
Cruz-Irisson, Miguel [1 ]
机构
[1] Inst Politecn Nacl, ESIME Culhuacan, Av Santa Ana 1000, Mexico City 04440, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico
关键词
2D materials; Density functional theory; Germanene; Hydrogen storage; Renewable energy storage; Decoration; DECORATED POROUS GRAPHENE; 1ST PRINCIPLES; DISSOCIATIVE ADSORPTION; MAGNETIC-PROPERTIES; CARBON; 1ST-PRINCIPLES; FULLERENE; CAPACITY; PROGRESS; ENERGY;
D O I
10.1016/j.ijhydene.2020.04.129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we have performed density functional theory-based calculations to study the adsorption of H-2 molecules on germanene decorated with alkali atoms (AM) and transition metal atoms (TM). The cohesive energy indicates that interaction between AM (TM) atoms and germanene is strong. The values of the adsorption energies of H-2 molecules on the AM or TM atoms are in the range physisorption. The K-decorated germanene has the largest storage capacity, being able to bind up to six H-2 molecules, whereas the Au and Na atoms adsorbed five and four H-2 molecules, respectively. Li and Ag atoms can bind a maximum of three H-2 molecules, while Cu-decorated germanene only adsorbed one H-2 molecule. Formation energies show that all the studied cases of H-2 molecules adsorbed on AM and TM atom-decorated germanene are energetically favorable. These results indicate that decorated germanene can serve as a hydrogen storage system. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20245 / 20256
页数:12
相关论文
共 104 条
  • [1] Hydrogen energy, economy and storage: Review and recommendation
    Abe, J. O.
    Popoola, A. P. I.
    Ajenifuja, E.
    Popoola, O. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) : 15072 - 15086
  • [2] Chemical sensing with 2D materials
    Anichini, Cosimo
    Czepa, Wlodzimierz
    Pakulski, Dawid
    Aliprandi, Alessandro
    Ciesielski, Artur
    Samori, Paolo
    [J]. CHEMICAL SOCIETY REVIEWS, 2018, 47 (13) : 4860 - 4908
  • [3] First principles studies for the interaction of hydrogen with a Li(100) surface
    Arboleda, NB
    Nobuhara, K
    Kasai, H
    Diño, WA
    Nakanishi, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (01) : 478 - 482
  • [4] Artacho E, 1999, PHYS STATUS SOLIDI B, V215, P809, DOI 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO
  • [5] 2-0
  • [6] Co-doped graphene sheets as a novel adsorbent for hydrogen storage: DFT and DFT-D3 correction dispersion study
    Bakhshi, Fatemeh
    Farhadian, Nafiseh
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (17) : 8355 - 8364
  • [7] Germanene termination of Ge2Pt crystals on Ge(110)
    Bampoulis, P.
    Zhang, L.
    Safaei, A.
    van Gastel, R.
    Poelsema, B.
    Zandvliet, H. J. W.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (44)
  • [8] Stability and Exfoliation of Germanane: A Germanium Graphane Analogue
    Bianco, Elisabeth
    Butler, Sheneve
    Jiang, Shishi
    Restrepo, Oscar D.
    Windl, Wolfgang
    Goldberger, Joshua E.
    [J]. ACS NANO, 2013, 7 (05) : 4414 - 4421
  • [9] CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS
    BOYS, SF
    BERNARDI, F
    [J]. MOLECULAR PHYSICS, 1970, 19 (04) : 553 - &
  • [10] Concepts for improving hydrogen storage in nanoporous materials
    Broom, D. P.
    Webb, C. J.
    Fanourgakis, G. S.
    Froudakis, G. E.
    Trikalitis, P. N.
    Hirscher, M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (15) : 7768 - 7779