Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance

被引:95
作者
Duangthongsuk, Weerapun [1 ,2 ]
Wongwises, Somchai [1 ]
机构
[1] King Mongkurs Univ Technol Thonburi, Dept Mech Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, Bangkok 10140, Thailand
[2] SE Asia Univ, Dept Mech Engn, Bangkok, Thailand
关键词
Thermophysical property; Heat transfer performance; Nanofluid; Particle volume concentration; ENHANCED THERMAL-CONDUCTIVITY; LAMINAR-FLOW; MASS-TRANSFER; PRESSURE-DROP; MODEL; SUSPENSIONS; VISCOSITY; PARALLEL; FLUIDS; TIO2;
D O I
10.1016/j.expthermflusci.2009.11.012
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article reports a comparison of the differences between using measured and computed thermophysical properties to describe the heat transfer performance of TiO2-water nanofluids. In this study. TiO2 nanoparticles with average diameters of 21 nm and a particle volume fraction of 0.2-1 vol.% are used. The thermal conductivity and viscosity of nanofluids were measured by using transient hot-wire apparatus and a Bohlin rotational rheometer, respectively. The well-known correlations for calculating the thermal conductivity and viscosity of nanofluids were used for describing the Nusselt number of nanofluids and compared with the results from the measured data. The results show that use of the models of thermophysical properties for calculating the Nusselt number of nanofluids gave similar results to use of the measured data. Where there is a lack of measured data on thermophysical properties, the most appropriate models for computing the thermal conductivity and viscosity of the nanofluids are the models of Yu and Choi and Wang et al., respectively. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:616 / 624
页数:9
相关论文
共 44 条
[1]   An investigation of heat and mass transfer between air and desiccant film in an inclined parallel and counter flow channels [J].
Ali, A ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (8-9) :1745-1760
[2]   Analysis of heat and mass transfer between air and falling film in a cross flow configuration [J].
Ali, A ;
Vafai, K ;
Khaled, ARA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (04) :743-755
[3]   EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) :97-117
[4]   Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids [J].
Ben Mansour, Ridha ;
Galanis, Nicolas ;
Nguyen, Cong Tam .
APPLIED THERMAL ENGINEERING, 2007, 27 (01) :240-249
[5]   THE VISCOSITY OF CONCENTRATED SUSPENSIONS AND SOLUTIONS [J].
BRINKMAN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (04) :571-571
[7]   Experimental microchannel heat sink performance studies using nanofluids [J].
Chein, Reiyu ;
Chuang, Jason .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2007, 46 (01) :57-66
[8]  
Choi SUS., 1995, ENHANCING THERMAL CO, V8, P281, DOI [10.1021/je60018a001, DOI 10.1115/1.1532008]
[9]   Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement -: art. no. 153107 [J].
Chon, CH ;
Kihm, KD ;
Lee, SP ;
Choi, SUS .
APPLIED PHYSICS LETTERS, 2005, 87 (15) :1-3
[10]  
Colebrook C. F., 1939, J. Inst. Civ. Eng, V12, P393, DOI [10.1680/ijoti.1939.13150, DOI 10.1680/IJOTI.1939.13150, 10.1680/ijoti.1939.14509, DOI 10.1680/IJOTI.1939.14509]