The Fredholm alternative for parabolic evolution equations with inhornogeneous boundary conditions

被引:9
作者
Maniar, Lahcen
Schnaubelt, Roland
机构
[1] Cadi Ayyad Univ, Fac Sci Semlalia, Marrakech, Morocco
[2] Univ Karlsruhe, Fak Math, Inst Anal, D-76128 Karlsruhe, Germany
关键词
Fredholm operator; index; exponential dichotomy; inhomogeneous evolution equation; evolution family; parabolic initial-boundary value problem; inter- and extrapolation;
D O I
10.1016/j.jde.2006.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Fredholm properties of parabolic evolution equations on R with inhomogeneous boundary values. These problems are transformed into evolution equations with inhomogeneities taking values in certain extrapolation spaces. Assuming that the underlying homogeneous problem is asymptotically hyperbolic, we show the Fredholm alternative for these equations. The results are applied to parabolic partial differential equations. (c) 2006 Elsevier Inc. All fights reserved.
引用
收藏
页码:308 / 339
页数:32
相关论文
共 36 条
[1]   Ordinary differential operators in Hilbert spaces and Fredholm pairs [J].
Abbondandolo, A ;
Majer, P .
MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (03) :525-562
[2]   INITIAL BOUNDARY-VALUE-PROBLEMS AND OPTIMAL-CONTROL FOR NONAUTONOMOUS PARABOLIC-SYSTEMS [J].
ACQUISTAPACE, P ;
FLANDOLI, F ;
TERRENI, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (01) :89-118
[3]  
Acquistapace P., 1988, DIFFERENTIAL INTEGRA, V1, P433
[4]  
Adams R., 1975, Sobolev Spaces
[5]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[6]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[7]  
[Anonymous], 1987, Rend. Sem. Mat. Univ. Padova
[8]  
[Anonymous], DYN PARTIAL DIFFER E
[9]  
Atsushi Y., 1990, Funkcial. Ekvac, V33, P139
[10]  
BASKAKOV AG, 2002, DOKL AKAD NAUK, V383, P583