Creeping solitons of the complex Ginzburg-Landau equation with a low-dimensional dynamical system model

被引:13
作者
Chang, Wonkeun [1 ]
Ankiewiez, Adrian [1 ]
Akhmediev, Nail [1 ]
机构
[1] Australian Natl Univ, Opt Sci Grp, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
dissipative soliton; method of moments; Ginzburg-Landau equation;
D O I
10.1016/j.physleta.2006.10.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We Study creeping solitons of the complex Ginzburg-Landau equation (CGLE) using numerical simulations and analyze them with a low-dimensional model using the method of moments. We find the regions of existence of creeping solitons in the parameter space of the CGLE. We also provide a comparison with exact results obtained using numerical simulations. Crown Copyright (c) 2006 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 15 条
[1]  
Agrawal G P., 2019, Nonlinear Fiber Optics, V6th edn
[2]   Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach [J].
Akhmediev, N ;
Soto-Crespo, JM ;
Town, G .
PHYSICAL REVIEW E, 2001, 63 (05) :566021-566021
[3]  
AKHMEDIEV N, 2005, ACOFT 30 SYDN, P110
[4]  
Akhmediev N., 1997, Solitons-Nonlinear Pulses and Beams
[5]  
Akhmediev N., 2005, Lecture Notes in Physics, V661
[6]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[7]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[8]  
Kuramoto Y., 1984, CHEM OSCILLATIONS WA
[9]  
Maimistov A. I., 1993, Journal of Experimental and Theoretical Physics, V77, P727
[10]   Complexity in biological systems [J].
Mesquita, MV ;
Vasconcellos, AR ;
Luzzi, R .
CONTEMPORARY PHYSICS, 1999, 40 (04) :247-256