Enhanced lithium adsorption/diffusion and improved Li capacity on SnS2 nanoribbons: A computational investigation

被引:30
作者
Tu, Kaixiong [1 ]
Li, Fengyu [1 ]
Chen, Zhongfang [1 ]
机构
[1] Univ Puerto Rico, Inst Funct Nanomaterials, Dept Chem, San Juan, PR 00931 USA
基金
美国国家科学基金会;
关键词
ANODE MATERIAL; PERFORMANCE; ELECTRODES; NANOTUBES; DIFFUSION; INSERTION; POLYTYPES; STORAGE; DESIGN; SIZE;
D O I
10.1557/jmr.2015.312
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Density functional theory computations were performed to investigate the adsorption and diffusion properties of lithium (Li) on tin disulfides nanosheets and its derived nanoribbons (NRs), in comparison with SnS2 bulk in 1T phase. The Li adsorption energies and migration barriers are comparable in SnS2 bulk and bilayer, and Li adsorbed at the octahedral sites has the highest binding energy in both SnS2 bulk and bilayer. Reducing the dimension of SnS2 to monolayer significantly lowers the Li diffusion barrier while keeping a considerable binding energy, and lithium favors the hollow sites which corresponding to the octahedral sites in bulk phase. Due to the edge effect, SnS(2)NRs gain an enhanced Li binding strength, increased Li mobility, and improved Li capacity. Thus, SnS2 NRs are a promising candidate for anode materials of Li-ion batteries with a high power density and fast charge/discharge rates.
引用
收藏
页码:878 / 885
页数:8
相关论文
共 50 条
[11]   A generalized synchronous transit method for transition state location [J].
Govind, N ;
Petersen, M ;
Fitzgerald, G ;
King-Smith, D ;
Andzelm, J .
COMPUTATIONAL MATERIALS SCIENCE, 2003, 28 (02) :250-258
[12]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[13]   Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte [J].
Holtz, Megan E. ;
Yu, Yingchao ;
Gunceler, Deniz ;
Gao, Jie ;
Sundararaman, Ravishankar ;
Schwarz, Kathleen A. ;
Arias, Tomas A. ;
Abruna, Hector D. ;
Muller, David A. .
NANO LETTERS, 2014, 14 (03) :1453-1459
[14]   Synthesis of SnS2/SnS fullerene-like nanoparticles:: A superlattice with polyhedral shape [J].
Hong, SY ;
Popovitz-Biro, R ;
Prior, Y ;
Tenne, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (34) :10470-10474
[15]   SnS2 nanotubes: a promising candidate for the anode material for lithium ion batteries [J].
Huang, Yucheng ;
Ling, Chongyi ;
Chen, Xi ;
Zhou, Danmei ;
Wang, Sufan .
RSC ADVANCES, 2015, 5 (41) :32505-32510
[16]   MoS2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials [J].
Hwang, Haesuk ;
Kim, Hyejung ;
Cho, Jaephil .
NANO LETTERS, 2011, 11 (11) :4826-4830
[17]   Single-crystalline SnS2 nano-belts fabricated by a novel hydrothermal method [J].
Ji, YJ ;
Zhang, H ;
Ma, XY ;
Xu, J ;
Yang, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (44) :L661-L665
[18]   New directions in tin sulfide materials chemistry [J].
Jiang, T ;
Ozin, GA .
JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (05) :1099-1108
[19]   Graphene, inorganic graphene analogs and their composites for lithium ion batteries [J].
Jing, Yu ;
Zhou, Zhen ;
Cabrera, Carlos R. ;
Chen, Zhongfang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) :12104-12122
[20]   Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries [J].
Jing, Yu ;
Zhou, Zhen ;
Cabrera, Carlos R. ;
Chen, Zhongfang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (48) :25409-25413