The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold

被引:52
|
作者
Cai, Zizhen [1 ]
Liu, Zehua [1 ]
Hu, Xiaodong [1 ]
Kuang, Hekun [1 ]
Zhai, Jinsong [1 ]
机构
[1] Univ British Columbia, Fac Appl Sci, Dept Mat Engn, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
关键词
Additive manufacturing (AM; 3D printing); Triply periodic minimal surface (TPMS); Bioscaffolding; SCAFFOLDS; BONE;
D O I
10.1007/s42242-019-00054-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Prevailing tissue degeneration caused by musculoskeletal maladies poses a great demand on bioscaffolds, which are artificial, biocompatible structures implanted into human bodies with appropriate mechanical properties. Recent advances in additive manufacturing, i.e., 3D printing, facilitated the fabrication of bioscaffolds with unprecedented geometrical complexity and size flexibility and allowed for the fabrication of topologies that would not have been achieved otherwise. In our work, we explored the effect of porosity on the mechanical properties of a periodic cellular structure. The structure was derived from the mathematically created triply periodic minimal surface (TPMS), namely the Sheet-Diamond topology. First, we employed a series of software including MathMod, Meshmixer, Netfabb and Cura to design the model. Then, we utilized additive manufacturing technology to fabricate the cellular structures with designated scale. Finally, we performed compressive testing to deduce the mechanical properties of each cellular structure. Results showed that, in comparison with the high-porosity group, the yield strength of the low-porosity group was 3 times higher, and the modulus was 2.5 times larger. Our experiments revealed a specific relationship between porosity and Young's modulus of PLA-made Sheet-Diamond TPMS structure. Moreover, it was observed that the high- and low-porosity structures failed through distinctive mechanisms, with the former breaking down via buckling and the latter via micro-fracturing.
引用
收藏
页码:242 / 255
页数:14
相关论文
共 50 条
  • [1] The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface(TPMS) bioscaffold
    Zizhen Cai
    Zehua Liu
    Xiaodong Hu
    Hekun Kuang
    Jinsong Zhai
    Bio-Design and Manufacturing, 2019, (04) : 242 - 255
  • [2] The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface(TPMS) bioscaffold
    Zizhen Cai
    Zehua Liu
    Xiaodong Hu
    Hekun Kuang
    Jinsong Zhai
    Bio-Design and Manufacturing, 2019, 2 (04) : 242 - 255
  • [3] The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold
    Zizhen Cai
    Zehua Liu
    Xiaodong Hu
    Hekun Kuang
    Jinsong Zhai
    Bio-Design and Manufacturing, 2019, 2 : 242 - 255
  • [4] 3D-printed triply periodic minimal surface (TPMS) structures as catalyst carriers
    Iwaniszyn, M.
    Sindera, K.
    Maszybrocka, J.
    Jodlowski, P. J.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 209 : 37 - 51
  • [5] 3D-printed triply periodic minimal surface bioceramic scaffold for bone defect treatment with tunable structure and mechanical properties
    Luo, Danni
    Su, Jin
    Zou, Yi
    Hua, Shuaibin
    Cheng, Lijin
    Qi, Dahu
    Yuan, Xi
    Zhu, Hao
    Liu, Changyu
    Shi, Yusheng
    Xiao, Jun
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 39020 - 39031
  • [6] Mechanical Properties of 3D-Printed Polymeric Cellular Structures Based on Bifurcating Triply Periodic Minimal Surfaces
    Zhang, Yanhong
    Zhang, Junming
    Chen, Xiaotian
    Yang, Weidong
    Chen, Hao
    Che, Shunai
    Han, Lu
    ADVANCED ENGINEERING MATERIALS, 2025,
  • [7] Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing
    Restrepo, S.
    Ocampo, S.
    Ramirez, J. A.
    Paucar, C.
    Garcia, C.
    4TH INTERNATIONAL MEETING FOR RESEARCHERS IN MATERIALS AND PLASMA TECHNOLOGY (4TH IMRMPT), 2017, 935
  • [8] Interpenetrating phase composites with 3D printed triply periodic minimal surface (TPMS) lattice structures
    Guo, Xiao
    Ding, Junhao
    Li, Xinwei
    Qu, Shuo
    Fuh, Jerry Ying Hsi
    Lu, Wen Feng
    Song, Xu
    Zhai, Wei
    COMPOSITES PART B-ENGINEERING, 2023, 248
  • [9] 3D printed triply periodic minimal surfaces calcium phosphate bone substitute: The effect of porosity design on mechanical properties
    Bouakaz, Islam
    Dehkord, Ehsan Sadeghian
    Meille, Sylvain
    Schrijnemakers, Audrey
    Boschini, Frederic
    Preux, Nicolas
    Hocquet, Stephane
    Geris, Liesbet
    Nolens, Gregory
    Grossin, David
    Dupret-Bories, Agnes
    CERAMICS INTERNATIONAL, 2024, 50 (02) : 2623 - 2636
  • [10] 3D-printed triply periodic minimal surface (TPMS) structures: Towards potential application of adsorption-based atmospheric water harvesting
    Gado, Mohamed G.
    Ookawara, Shinichi
    ENERGY CONVERSION AND MANAGEMENT, 2023, 297