Some inequalities involving Hadamard-type k-fractional integral operators

被引:76
作者
Agarwal, Praveen [1 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
关键词
k-Riemann-Liouville calculus; fractional integral inequalities; Hadamard fractional operator;
D O I
10.1002/mma.4270
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our main aim is to establish some new fractional integral inequalities involving Hadamard-type k-fractional integral operators recently given by Mubeen et al. Furthermore, the paper discusses some of their relevance with known results. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:3882 / 3891
页数:10
相关论文
共 22 条
[1]   On Coupled Systems of Time-Fractional Differential Problems by Using a New Fractional Derivative [J].
Alsaedi, Ahmed ;
Baleanu, Dumitru ;
Etemad, Sina ;
Rezapour, Shahram .
JOURNAL OF FUNCTION SPACES, 2016, 2016
[2]  
Anastassiou GA, 2011, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-0703-4
[3]  
Atangana A, 2016, J ENG MECH, DOI [10.1061/(ASCE)EM.1943-7889.0001091, DOI 10.1061/(ASCE)EM.1943-7889]
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[6]  
Belarbi S., 2009, J. Inequal. Pure Appl. Math., V10, P1
[7]  
Chebyshev P.L., 1882, Proc. Math. Soc. Charkov, V2, P93
[8]  
Dahmani Z, 2011, BULL MATH ANAL APPL, V3, P38
[9]  
Diaz R., 2007, DIVULGACIONES MATH, V15
[10]  
Dragomir SS, 2000, INDIAN J PURE AP MAT, V31, P397