We investigate a recently proposed model for decision learning in a population of spiking neurons where synaptic plasticity is modulated by a population signal in addition to reward feedback. For the basic model, binary population decisionmaking based on spike/no-spike coding, a detailed computational analysis is given about how learning performance depends on population size and task complexity. Next, we extend the basic model to n-ary decision making and show that it can also be used in conjunction with other population codes such as rate or even latency coding.
机构:
Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
Fiete, Ila R.
Seung, H. Sebastian
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
机构:
Rutgers State Univ, Ctr Mol & Behav Neurosci, Newark, NJ 07102 USA
NYU, Sch Med, Smilow Neurosci Program, New York, NY 10016 USA
NYU, Sch Med, Dept Otolaryngol, New York, NY 10016 USARutgers State Univ, Ctr Mol & Behav Neurosci, Newark, NJ 07102 USA
机构:
Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
Fiete, Ila R.
Seung, H. Sebastian
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
机构:
Rutgers State Univ, Ctr Mol & Behav Neurosci, Newark, NJ 07102 USA
NYU, Sch Med, Smilow Neurosci Program, New York, NY 10016 USA
NYU, Sch Med, Dept Otolaryngol, New York, NY 10016 USARutgers State Univ, Ctr Mol & Behav Neurosci, Newark, NJ 07102 USA