Deep Segmentation Architecture with Self Attention for Glaucoma Detection

被引:1
作者
Aljazaeri, Manar [1 ]
Bazi, Yakoub [1 ]
AlMubarak, Haidar [1 ]
Alajlan, Naif [1 ]
机构
[1] King Saud Univ, Comp Engn Dept, Riyadh, Saudi Arabia
来源
2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE & MODERN ASSISTIVE TECHNOLOGY (ICAIMAT) | 2020年
关键词
Semantic segmentation; Retinal; Fundus images; Glaucoma; Artificial intelligence; REFUGE; FEATURES;
D O I
10.1109/icaimat51101.2020.9308006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glaucoma is one of the disorders that infects the retinal. All people are exposed to infection by Glaucoma, but age people most commonly affect them and lead to loss of vision. Unfortunately, there is no Glaucoma medication yet, but the good news is, early detection of it prevents further vision loss or blindness. The traditional diagnose of Glaucoma faced many challenges like a long time, less of ophthalmologists in the remote area, and difficulty detection Glaucoma in the early stage of it. Therefore, clinical diagnosis has been combined with computer vision techniques. In this paper, we suggest a deep learning method based on Cup-to-disc ratio measures for the detection of Glaucoma. We used Encoder-Decoder with Atrous Convolution and a Self-attention mechanism, which allows modeling a long-range dependency across image regions. The experimental results of this method are proved in the REFUGE dataset.
引用
收藏
页数:4
相关论文
共 16 条
[1]   A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images [J].
Acharya, U. Rajendra ;
Bhat, Shreya ;
Koh, Joel E. W. ;
Bhandary, Sulatha V. ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 88 :72-83
[2]  
Carrillo J., 2019, SYMP IMAG SIG PROC A, P1, DOI 10.1109/STSIVA.2019.8730250
[3]   Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models [J].
Chai, Yidong ;
Liu, Hongyan ;
Xu, Jie .
KNOWLEDGE-BASED SYSTEMS, 2018, 161 :147-156
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]   Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image [J].
Fu, Huazhu ;
Cheng, Jun ;
Xu, Yanwu ;
Zhang, Changqing ;
Wong, Damon Wing Kee ;
Liu, Jiang ;
Cao, Xiaochun .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2493-2501
[6]   Computer-aided diagnosis of glaucoma using fundus images: A review [J].
Hagiwara, Yuki ;
Koh, Joel En Wei ;
Tan, Jen Hong ;
Bhandary, Sulatha V. ;
Laude, Augustinus ;
Ciaccio, Edward J. ;
Tong, Louis ;
Acharya, U. Rajendra .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 165 :1-12
[7]  
Joshua AO, 2019, 2019 SOUTHERN AFRICAN UNIVERSITIES POWER ENGINEERING CONFERENCE/ROBOTICS AND MECHATRONICS/PATTERN RECOGNITION ASSOCIATION OF SOUTH AFRICA (SAUPEC/ROBMECH/PRASA), P183, DOI [10.1109/robomech.2019.8704727, 10.1109/RoboMech.2019.8704727]
[8]   Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning [J].
Kim, Jongwoo ;
Loc Tran ;
Chew, Emily Y. ;
Antani, Sameer .
2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, :489-494
[9]  
Le Q. V, 2020, P 2020 IEEE CVF C CO
[10]   REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs [J].
Orlando, Jose Ignacio ;
Fu, Huazhu ;
Breda, Joao Barbossa ;
van Keer, Karel ;
Bathula, Deepti R. ;
Diaz-Pinto, Andres. ;
Fang, Ruogu ;
Heng, Pheng-Ann ;
Kim, Jeyoung ;
Lee, JoonHo ;
Lee, Joonseok ;
Li, Xiaoxiao ;
Liu, Peng ;
Lu, Shuai ;
Murugesan, Balamurali ;
Naranjo, Valery ;
Phaye, Sai Samarth R. ;
Shankaranarayana, Sharath M. ;
Sikka, Apoorva ;
Son, Jaemin ;
van den Hengel, Anton ;
Wang, Shujun ;
Wu, Junyan ;
Wu, Zifeng ;
Xu, Guanghui ;
Xu, Yongli ;
Yin, Pengshuai ;
Li, Fei ;
Zhang, Xiulan ;
Xu, Yanwu ;
Bogunovic, Hrvoje .
MEDICAL IMAGE ANALYSIS, 2020, 59