Superresolution Modeling of Calcium Release in the Heart

被引:79
作者
Walker, Mark A. [1 ]
Williams, George S. B. [2 ]
Kohl, Tobias [3 ]
Lehnart, Stephan E. [3 ]
Jafri, M. Saleet [4 ]
Greenstein, Joseph L. [1 ]
Lederer, W. J. [2 ]
Winslow, Raimond L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Inst Computat Med, Baltimore, MD 21218 USA
[2] Univ Maryland, Sch Med, Ctr Biomed Engn & Technol, Baltimore, MD 21201 USA
[3] Univ Med Ctr Groningen, Clin Cardiol & Pulmonol, Heart Res Ctr Goettingen, Gottingen, Germany
[4] George Mason Univ, Krasnow Inst Adv Study, Dept Mol Neurosci, Fairfax, VA 22030 USA
关键词
CARDIAC RYANODINE RECEPTOR; RETICULUM CA2+ LEAK; SARCOPLASMIC-RETICULUM; LUMINAL CA2+; VENTRICULAR-TACHYCARDIA; LOCAL-CONTROL; MATHEMATICAL-MODEL; REDOX MODIFICATION; KINASE-II; T-TUBULES;
D O I
10.1016/j.bpj.2014.11.003
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+](ss)). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions.
引用
收藏
页码:3009 / 3020
页数:12
相关论文
共 94 条
[31]   Ryanodine receptor allosteric coupling and the dynamics of calcium sparks [J].
Groff, Jeffrey R. ;
Smith, Gregory D. .
BIOPHYSICAL JOURNAL, 2008, 95 (01) :135-154
[32]   Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes [J].
Guo, Tao ;
Zhang, Tong ;
Mestril, Ruben ;
Bers, Donald M. .
CIRCULATION RESEARCH, 2006, 99 (04) :398-406
[33]   Ryanodine Receptor Current Amplitude Controls Ca2+ Sparks in Cardiac Muscle [J].
Guo, Tao ;
Gillespie, Dirk ;
Fill, Michael .
CIRCULATION RESEARCH, 2012, 111 (01) :28-36
[34]   Molecular basis of catecholaminergic polymorphic ventricular tachycardia [J].
Gyoerke, Sandor .
HEART RHYTHM, 2009, 6 (01) :123-129
[35]   Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites [J].
Györke, I ;
Györke, S .
BIOPHYSICAL JOURNAL, 1998, 75 (06) :2801-2810
[36]   Modelling cardiac calcium sparks in a three-dimensional reconstruction of a calcium release unit [J].
Hake, Johan ;
Edwards, Andrew G. ;
Yu, Zeyun ;
Kekenes-Huskey, Peter M. ;
Michailova, Anushka P. ;
McCammon, J. Andrew ;
Holst, Michael J. ;
Hoshijima, Masahiko ;
McCulloch, Andrew D. .
JOURNAL OF PHYSIOLOGY-LONDON, 2012, 590 (18) :4403-4422
[37]   Role of CaMKII in RyR leak, EC coupling and action potential duration: A computational model [J].
Hashambhoy, Yasmin L. ;
Greenstein, Joseph L. ;
Winslow, Raimond L. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2010, 49 (04) :617-624
[38]   Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart [J].
Hayashi, Takeharu ;
Martone, Maryann E. ;
Yu, Zeyun ;
Thor, Andrea ;
Doi, Masahiro ;
Holst, Michael J. ;
Ellisman, Mark H. ;
Hoshijima, Masahiko .
JOURNAL OF CELL SCIENCE, 2009, 122 (07) :1005-1013
[39]   Evolution of cardiac calcium waves from stochastic calcium sparks [J].
Izu, LT ;
Wier, WG ;
Balke, CW .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :103-120
[40]   Cardiac Ca2+ dynamics:: The roles of ryanodine receptor adaptation and sarcoplasmic reticulum load [J].
Jafri, MS ;
Rice, JJ ;
Winslow, RL .
BIOPHYSICAL JOURNAL, 1998, 74 (03) :1149-1168