Optimal decay of extremals for the fractional Sobolev inequality

被引:98
作者
Brasco, Lorenzo [1 ,3 ]
Mosconi, Sunra [2 ]
Squassina, Marco [2 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, 39 Rue Frederic Joliot Curie, F-13453 Marseille, France
[2] Univ Verona, Dipartimento Informat, I-37100 Verona, Italy
[3] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 35, I-44121 Ferrara, Italy
关键词
CONSTANTS; SYMMETRY; BREZIS;
D O I
10.1007/s00526-016-0958-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the sharp asymptotic behavior at infinity of extremal functions for the fractional critical Sobolev embedding.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 34 条
[1]  
Anbin T., 1976, J. Diff. Geom., V11, P573
[2]   A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) :1815-1851
[3]  
[Anonymous], 1989, J. Amer. Math. Soc.
[4]  
[Anonymous], REV MAT IBE IN PRESS
[5]  
[Anonymous], PREPRINT
[6]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[7]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[8]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799
[9]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[10]   A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities [J].
Cordero-Erausquin, D ;
Nazaret, B ;
Villani, C .
ADVANCES IN MATHEMATICS, 2004, 182 (02) :307-332