Determination of external loop topology in the serotonin transporter by site-directed chemical labeling

被引:120
作者
Chen, JG [1 ]
Liu-Chen, S [1 ]
Rudnick, G [1 ]
机构
[1] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06510 USA
关键词
D O I
10.1074/jbc.273.20.12675
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transmembrane topology of the serotonin transporter (SERT) has been examined by measuring the reactivity of selected lysine and cysteine residues with extracellular reagents. An impermeant biotinylating reagent, sulfosuccinimidyl 2-(biotinamido)ethyl-1,3-dithiopropionate (NHS-SS-biotin), was shown to label SERT transiently expressed in cultured cells. Replacement of four lysine residues that were predicted to lie in external hydrophilic loops (eK-less) largely prevented the biotinylation reaction. Likewise, the cysteine-specific biotinylation reagent N-biotinylaminoethylmethanethiosulfonate (MTSEA-biotin) labeled wild type SERT but not a mutant in which Cys-109, predicted to lie in the first external loop, was replaced with alanine, These two mutant transporters reacted with the biotinylating reagents in digitonin-permeabilized cells, demonstrating that the abundant lysine and cysteine residues predicted to lie in intracellular hydrophilic domains were reactive but not accessible in intact cells. Mutants containing a single external lysine at positions 111, 194, 243, 319, 399, 490, and 571 reacted more readily with NHS-SS-biotin than did the eK-less mutant. Similarly, mutants with a single cysteine at positions 109, 310, 406, 489, and 564 reacted more readily with MTSEA-biotin than did the C109A mutant. All of these mutants were active and therefore likely to be folded correctly. These results support the original transmembrane topology and argue against an alternative topology proposed recently for the related glycine and gamma-aminobutyric acid transporters.
引用
收藏
页码:12675 / 12681
页数:7
相关论文
共 38 条
[1]   NEUROTRANSMITTER TRANSPORTERS - RECENT PROGRESS [J].
AMARA, SG ;
KUHAR, MJ .
ANNUAL REVIEW OF NEUROSCIENCE, 1993, 16 :73-93
[2]   The membrane topology of GAT-1, a (Na++Cl-)-coupled gamma-aminobutyric acid transporter from rat brain [J].
Bennett, ER ;
Kanner, BI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (02) :1203-1210
[3]   VACCINIA-T7 RNA-POLYMERASE EXPRESSION SYSTEM - EVALUATION FOR THE EXPRESSION CLONING OF PLASMA-MEMBRANE TRANSPORTERS [J].
BLAKELY, RD ;
CLARK, JA ;
RUDNICK, G ;
AMARA, SG .
ANALYTICAL BIOCHEMISTRY, 1991, 194 (02) :302-308
[4]   CLONING AND EXPRESSION OF A FUNCTIONAL SEROTONIN TRANSPORTER FROM RAT-BRAIN [J].
BLAKELY, RD ;
BERSON, HE ;
FREMEAU, RT ;
CARON, MG ;
PEEK, MM ;
PRINCE, HK ;
BRADLEY, CC .
NATURE, 1991, 354 (6348) :66-70
[5]   Neurotransmitter transporters: Molecular biology, function, and regulation [J].
Borowsky, B ;
Hoffman, BJ .
INTERNATIONAL REVIEW OF NEUROBIOLOGY, VOL 38, 1995, 38 :139-199
[6]  
BRUSS M, 1995, J BIOL CHEM, V270, P9197
[7]   External cysteine residues in the serotonin transporter [J].
Chen, JG ;
LiuChen, S ;
Rudnick, G .
BIOCHEMISTRY, 1997, 36 (06) :1479-1486
[8]   The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding [J].
Chen, JG ;
Sachpatzidis, A ;
Rudnick, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (45) :28321-28327
[9]   Analysis of the transmembrane topology and membrane assembly of the GAT-1 gamma-aminobutyric acid transporter [J].
Clark, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (23) :14695-14704
[10]   MOLECULAR-CLONING AND EXPRESSION OF A HIGH-AFFINITY L-PROLINE TRANSPORTER EXPRESSED IN PUTATIVE GLUTAMATERGIC PATHWAYS OF RAT-BRAIN [J].
FREMEAU, RT ;
CARON, MG ;
BLAKELY, RD .
NEURON, 1992, 8 (05) :915-926