Maximum principle for an optimal control problem with an asymptotic endpoint constraint

被引:0
作者
Aseev, S. M. [1 ,2 ,3 ]
机构
[1] RAS, Steklov Math Inst, Gubkina 8, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Leninskiye Gory 1, Moscow 119991, Russia
[3] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2021年 / 27卷 / 02期
关键词
optimal control; infinite horizon; Pontryagin maximum principle; asymptotic endpoint constraint; growth models; sustainable development; RENEWABLE RESOURCES; OPTIMAL-GROWTH; MODEL;
D O I
10.21538/0134-4889-2021-27-2-35-48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under conditions characterizing the dominance of the discounting factor, a complete version of the Pontryagin maximum principle for an optimal control problem with infinite time horizon and a special asymptotic endpoint constraint is developed. Problems of this type arise in mathematical economics in the studies of growth models.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 31 条
  • [1] Acemoglu D., 2008, INTRO MODERN EC GROW
  • [2] Alexeev V.M., 1979, OPTIMALNOE UPRAVLENI
  • [3] [Anonymous], 1966, TOPOLOGY
  • [4] Another view of the maximum principle for infinite-horizon optimal control problems in economics
    Aseev, S. M.
    Veliov, V. M.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (06) : 963 - 1011
  • [5] Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
    Aseev, S. M.
    Veliov, V. M.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 : S22 - S39
  • [6] Needle Variations in Infinite-Horizon Optimal Control
    Aseev, S. M.
    Veliov, V. M.
    [J]. VARIATIONAL AND OPTIMAL CONTROL PROBLEMS ON UNBOUNDED DOMAIN, 2014, 619 : 1 - 17
  • [7] Infinite-horizon optimal control problems in economics
    Aseev, S. M.
    Besov, K. O.
    Kryazhimskiy, A. V.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (02) : 195 - 253
  • [8] Aseev S.M., 2012, Dynamics of Continuous, Discrete and Impulsive Systems, Series B, V19, P43
  • [9] Aseev S, 2018, LECT NOTES ECON MATH, V687, P221, DOI 10.1007/978-3-319-75169-6_11
  • [10] Optimal Policies in the DasguptaHealSolowStiglitz Model under Nonconstant Returns to Scale
    Aseev, Sergey M.
    Besov, Konstantin O.
    Kaniovski, Serguei Yu.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 304 (01) : 74 - 109