Non-absolutely irreducible elements in the ring of integer-valued polynomials

被引:7
作者
Nakato, Sarah [1 ]
机构
[1] Graz Univ Technol, Inst Anal & Zahlentheorie, Kopernikusgasse 24, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Irreducible elements; absolutely irreducible elements; non-absolutely irreducible elements; integer-valued polynomials; FACTORIZATION; ELASTICITY;
D O I
10.1080/00927872.2019.1705474
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. An element is said to be absolutely irreducible in R if for all natural numbers n > 1, r(n) has essentially only one factorization namely If is irreducible in R but for some n > 1, r(n) has other factorizations distinct from then r is called non-absolutely irreducible. In this paper, we construct non-absolutely irreducible elements in the ring of integer-valued polynomials. We also give generalizations of these constructions.
引用
收藏
页码:1789 / 1802
页数:14
相关论文
共 11 条
[1]  
ANDERSON DF, 1995, LECT NOTES PURE APPL, V171, P125
[2]  
[Anonymous], 1997, American Mathematical Society Surveys and Monographs
[3]  
Antoniou Austin, 2018, ITM Web of Conferences, V20, DOI 10.1051/itmconf/20182001004
[4]   ELASTICITY FOR INTEGRAL-VALUED POLYNOMIALS [J].
CAHEN, PJ ;
CHABERT, JL .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 103 (03) :303-311
[5]  
Chapman S. T., 2012, PROGR COMMUTATIVE AL, V2, P301
[6]   Irreducible polynomials and full elasticity in rings of integer-valued polynomials [J].
Chapman, ST ;
McClain, BA .
JOURNAL OF ALGEBRA, 2005, 293 (02) :595-610
[7]   Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields [J].
Frisch, Sophie ;
Nakato, Sarah ;
Rissner, Roswitha .
JOURNAL OF ALGEBRA, 2019, 528 :231-249
[8]   A construction of integer-valued polynomials with prescribed sets of lengths of factorizations [J].
Frisch, Sophie .
MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4) :341-350
[9]  
Geroldinger A., 2006, Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, V278
[10]  
Kaczorowski J., 1981, C MATH, V45, P327