Variational Problems Involving a Caputo-Type Fractional Derivative

被引:41
作者
Almeida, Ricardo [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
关键词
Fractional calculus; Caputo-type fractional derivative; Variational problems; CALCULUS; TERMS;
D O I
10.1007/s10957-016-0883-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to study certain problems of calculus of variations that are dependent upon a Lagrange function on a Caputo-type fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo-Hadamard fractional derivatives that are dependent on a real parameter . Sufficient and necessary conditions of the first and second order are presented. The cases of integral and holonomic constraints are also considered.
引用
收藏
页码:276 / 294
页数:19
相关论文
共 19 条
[1]   Generalized vector calculus on convex domain [J].
Agrawal, Om P. ;
Xu, Yufeng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 23 (1-3) :129-140
[2]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[3]  
Almeida R., 2015, Computational methods in the fractional calculus of variations
[4]   Calculus of variations with fractional derivatives and fractional integrals [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1816-1820
[5]  
[Anonymous], 2006, Journal of the Electrochemical Society
[6]  
Anosov D. V., 1988, ORDINARY DIFFERENTIA, V1
[7]   Variational problems with fractional derivatives: Euler-Lagrange equations [J].
Atanackovic, T. M. ;
Konjik, S. ;
Pilipovic, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
[8]   Fractional variational principles with delay [J].
Baleanu, Dumitru ;
Abdeljawad, Thabet ;
Jarad, Fahd .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
[9]   On Caputo modification of the Hadamard fractional derivatives [J].
Gambo, Yusuf Y. ;
Jarad, Fahd ;
Baleanu, Dumitru ;
Abdeljawad, Thabet .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[10]   Caputo-type modification of the Hadamard fractional derivatives [J].
Jarad, Fahd ;
Abdeljawad, Thabet ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,