Graph Neural Network: A Comprehensive Review on Non-Euclidean Space

被引:108
作者
Asif, Nurul A. [1 ]
Sarker, Yeahia [1 ]
Chakrabortty, Ripon K. [2 ]
Ryan, Michael J. [2 ]
Ahamed, Md. Hafiz [1 ]
Saha, Dip K. [1 ]
Badal, Faisal R. [1 ]
Das, Sajal K. [1 ]
Ali, Md. Firoz [1 ]
Moyeen, Sumaya I. [1 ]
Islam, Md. Robiul [1 ]
Tasneem, Zinat [1 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Mechatron Engn, Rajshahi 6204, Bangladesh
[2] Univ New South Wales UNSW Canberra, Sch Engn & Informat Technol, Canberra, ACT 2610, Australia
关键词
Convolution; Graph neural networks; Computational modeling; Taxonomy; Feature extraction; Task analysis; Licenses; Graph neural network; geometric deep learning; graph-structured network; non-euclidean space; CONVOLUTIONAL NETWORKS; ATTENTION;
D O I
10.1109/ACCESS.2021.3071274
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This review provides a comprehensive overview of the state-of-the-art methods of graph-based networks from a deep learning perspective. Graph networks provide a generalized form to exploit non-euclidean space data. A graph can be visualized as an aggregation of nodes and edges without having any order. Data-driven architecture tends to follow a fixed neural network trying to find the pattern in feature space. These strategies have successfully been applied to many applications for euclidean space data. Since graph data in a non-euclidean space does not follow any kind of order, these solutions can be applied to exploit the node relationships. Graph Neural Networks (GNNs) solve this problem by exploiting the relationships among graph data. Recent developments in computational hardware and optimization allow graph networks possible to learn the complex graph relationships. Graph networks are therefore being actively used to solve many problems including protein interface, classification, and learning representations of fingerprints. To encapsulate the importance of graph models, in this paper, we formulate a systematic categorization of GNN models according to their applications from theory to real-life problems and provide a direction of the future scope for the applications of graph models as well as highlight the limitations of existing graph networks.
引用
收藏
页码:60588 / 60606
页数:19
相关论文
共 50 条
  • [31] Dual Fusion-Propagation Graph Neural Network for Multi-View Clustering
    Xiao, Shunxin
    Du, Shide
    Chen, Zhaoliang
    Zhang, Yunhe
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 9203 - 9215
  • [32] Graph Neural Network Operators: a Review
    Anuj Sharma
    Sukhdeep Singh
    S. Ratna
    Multimedia Tools and Applications, 2024, 83 : 23413 - 23436
  • [33] Graph Neural Network Operators: a Review
    Sharma, Anuj
    Singh, Sukhdeep
    Ratna, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 23413 - 23436
  • [34] Application of an Improved Graph Neural Network for Drug Property Prediction
    Ma, Xiaopu
    Wang, Zhan
    Li, He
    IEEE ACCESS, 2024, 12 : 46812 - 46820
  • [35] A Comprehensive Survey of Graph Neural Networks for Knowledge Graphs
    Ye, Zi
    Kumar, Yogan Jaya
    Sing, Goh Ong
    Song, Fengyan
    Wang, Junsong
    IEEE ACCESS, 2022, 10 : 75729 - 75741
  • [36] Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An Application for MxIF Oncology Data
    Farhadloo, Majid
    Sharma, Arun
    Gupta, Jayant
    Leontovich, Alexey
    Markovic, Svetomir N.
    Shekhar, Shashi
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 616 - 624
  • [37] Multi-Dimensional Edge Features Graph Neural Network on Few-Shot Image Classification
    Xiong, Chao
    Li, Wen
    Liu, Yun
    Wang, Minghui
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 573 - 577
  • [38] Multilabel Aerial Image Classification With a Concept Attention Graph Neural Network
    Lin, Dan
    Lin, Jianzhe
    Zhao, Liang
    Wang, Z. Jane
    Chen, Zhikui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Quadratic Hamiltonians on non-Euclidean spaces of arbitrary constant curvature
    Biggs, James D.
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1717 - 1721
  • [40] Modeling and Rendering Non-Euclidean Spaces approximated with Concatenated Polytopes
    Kim, Seung-Wook
    Doh, Jaehyung
    Han, Junghyun
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04):