Kazhdan groups with infinite outer automorphism group

被引:16
作者
Ollivier, Yann
Wise, Daniel T.
机构
[1] Ecole Normale Super Lyon, CNRS, UMPA, F-69364 Lyon 7, France
[2] McGill Univ, Dept Math, Montreal, PQ H3A 2K6, Canada
关键词
outer automorphism groups; property T; small cancellation; random groups;
D O I
10.1090/S0002-9947-06-03941-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each countable group Q we produce a short exact sequence 1 -> N -> G -> Q -> 1 where G has a graphical (1)/(6) presentation and N is f.g. and satisfies property T. As a consequence we produce a group N with property T such that Out( N) is infinite. Using the tools developed we are also able to produce examples of non-Hopfian and non-coHopfian groups with property T. One of our main tools is the use of random groups to achieve certain properties.
引用
收藏
页码:1959 / 1976
页数:18
相关论文
共 27 条
[1]  
[Anonymous], 1993, GEOMETRIC GROUP THEO
[2]   Every group is an outer automorphism group of a finitely generated group [J].
Bumagin, I ;
Wise, DT .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 200 (1-2) :137-147
[3]  
Davidoff G., 2003, London Mathematical Society Student Texts, V55
[4]  
DECORNULIER Y, IN PRESS P AM MATH S
[5]  
DELAHARPE P, 1989, ASTERISQUE, P1
[6]  
Ghys E., 1990, Progress in Mathematics, V83
[7]  
Ghys T, 2004, ASTERISQUE, P173
[8]   Random walk in random groups [J].
Gromov, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) :73-146
[9]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [DOI 10.1007/978-1-4613-9586-7_3, 10.1007/978-1-4613-9586-7_3]
[10]  
HAGLUND F, 2004, SPECIAL CUBE COMPLEX