The Clifford-Fourier integral kernel in even dimensional Euclidean space

被引:10
作者
Brackx, Fred [1 ]
De Schepper, Nele [1 ]
Sommen, Frank [1 ]
机构
[1] Univ Ghent, Fac Engn, Dept Math Anal, Clifford Res Grp, Ghent, Belgium
关键词
Multi-dimensional Fourier transform; Clifford analysis;
D O I
10.1016/j.jmaa.2009.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, we devised a promising new multi-dimensional integral transform within the Clifford analysis setting, the so-called Fourier-Bessel transform. In the specific case of dimension two, it coincides with the Clifford-Fourier transform introduced earlier as an operator exponential. Moreover, the L-2-basis elements, consisting of generalized Clifford-Hermite functions, appear to be simultaneous eigenfunctions of both integral transforms. In the even dimensional case, this allows us to express the Clifford-Fourier transform in terms of the Fourier-Bessel transform, leading to a closed form of the Clifford-Fourier integral kernel. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:718 / 728
页数:11
相关论文
共 12 条
[1]   The mehler formula for the generalized Clifford-Hermite polynomials [J].
Brackx, F. ;
De Schepper, N. ;
Kou, K. I. ;
Sommen, F. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (04) :697-704
[2]   The Clifford-Fourier transform [J].
Brackx, F ;
De Schepper, N ;
Sommen, F .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) :669-681
[3]  
Brackx F., 1982, RES NOTES MATH
[4]  
Brackx F., 2009, P 18 INT C APPL COMP
[5]   The two-dimensional Clifford-Fourier transform [J].
Brackx, Fred ;
De Schepper, Nele ;
Sommen, Frank .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 26 (1-2) :5-18
[6]   The Fourier Transform in Clifford Analysis [J].
Brackx, Fred ;
De Schepper, Nelle ;
Sommen, Frank .
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 156, 2009, 156 :55-201
[7]  
Delanghe R., 1992, Clifford Algebra and Spinor-Valued Functions
[8]  
Gilbert J., 1991, Clifford algebras and Dirac operator in Harmonic Analysis
[9]  
Gurlebeck K., 1997, Quaternionic and Clifford Calculus for Physicists and Engineers
[10]  
Magnus Wilhelm, 1966, Die Grundlehren der mathematischen Wissenschaften, V52