Controlling Diffraction Patterns with Metagratings

被引:119
作者
Popov, Vladislav [1 ]
Boust, Fabrice [1 ,2 ]
Burokur, Shah Nawaz [3 ]
机构
[1] Univ Paris Saclay, Ctr Supelec, SONDRA, F-91190 Gif Sur Yvette, France
[2] Univ Paris Saclay, ONERA, DEMR, F-91123 Palaiseau, France
[3] Univ Paris Nanterre, UPL, LEME, F-92410 Ville Davray, France
关键词
Interferometry - Polarization - Electric lines;
D O I
10.1103/PhysRevApplied.10.011002
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this study, we elaborate on the recent concept of metagratings proposed in Ra'di et al. [Phys. Rev. Lett. 119, 067404 (2017)] for efficient manipulation of reflected waves. Essentially, a metagrating is a set of 1D arrays of polarization line currents which are engineered to cancel scattering in undesirable diffraction orders. We consider a general case of metagratings composed of N polarization electric line currents per supercell. This generalization is a necessary step to totally control diffraction patterns. We show that a metagrating having N equal to the number of plane waves scattered in the far field can be used to control the diffraction pattern. To validate the developed theoretical approach, anomalous and multichannel reflections are demonstrated with 3D full-wave simulations in the microwave regime at 10 GHz. The results are interesting for the metamaterials community as they allow one to significantly decrease the number of used elements and simplify the design of wave front manipulation devices, which is very convenient for optical and infrared frequency ranges. Our findings may also provide a way to develop efficient tunable antennas in the microwave domain.
引用
收藏
页数:5
相关论文
共 19 条
[1]  
[Anonymous], GENETIC ALGORITHMS R
[2]   Flat Engineered Multichannel Reflectors [J].
Asadchy, V. S. ;
Diaz-Rubio, A. ;
Tcvetkova, S. N. ;
Kwon, D. -H. ;
Elsakka, A. ;
Albooyeh, M. ;
Tretyakov, S. A. .
PHYSICAL REVIEW X, 2017, 7 (03)
[3]   Perfect control of reflection and refraction using spatially dispersive metasurfaces [J].
Asadchy, V. S. ;
Albooyeh, M. ;
Tcvetkova, S. N. ;
Diaz-Rubio, A. ;
Ra'di, Y. ;
Tretyakov, S. A. .
PHYSICAL REVIEW B, 2016, 94 (07)
[4]   Efficient anomalous reflection through near-field interactions in metasurfaces [J].
Chalabi, H. ;
Ra'di, Y. ;
Sounas, D. L. ;
Alu, A. .
PHYSICAL REVIEW B, 2017, 96 (07)
[5]   From the generalized reflection law to the realization of perfect anomalous reflectors [J].
Diaz-Rubio, Ana ;
Asadchy, Viktar S. ;
Elsakka, Amr ;
Tretyakov, Sergei A. .
SCIENCE ADVANCES, 2017, 3 (08)
[6]   Unveiling the Properties of Metagratings via a Detailed Analytical Model for Synthesis and Analysis [J].
Epstein, Ariel ;
Rabinovich, Oshri .
PHYSICAL REVIEW APPLIED, 2017, 8 (05)
[7]   Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection [J].
Epstein, Ariel ;
Eleftheriades, George V. .
PHYSICAL REVIEW LETTERS, 2016, 117 (25)
[8]  
Felsen L. B., 1994, Radiation and Scattering of Waves
[9]   Metasurfaces: From microwaves to visible [J].
Glybovski, Stanislav B. ;
Tretyakov, Sergei A. ;
Belov, Pavel A. ;
Kivshar, Yuri S. ;
Simovski, Constantin R. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 634 :1-72
[10]   Modeling and design of electronically tunable reflectarrays [J].
Hum, Sean Victor ;
Okoniewski, Michal ;
Davies, Robert J. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (08) :2200-2210