A relaxed generalized Newton iteration method for generalized absolute value equations

被引:14
作者
Cao, Yang [1 ]
Shi, Quan [1 ]
Zhu, Sen-Lai [1 ]
机构
[1] Nantong Univ, Sch Transportat & Civil Engn, Nantong 226019, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
基金
中国国家自然科学基金;
关键词
generalized absolute value equations; Newton method; relaxation; globally convergence; LINEAR COMPLEMENTARITY; CONVERGENCE; ALGORITHM;
D O I
10.3934/math.2021078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To avoid singular generalized Jacobian matrix and further accelerate the convergence of the generalized Newton (GN) iteration method for solving generalized absolute value equations Ax - B vertical bar x vertical bar = b, in this paper we propose a new relaxed generalized Newton (RGN) iteration method by introducing a relaxation iteration parameter. The new RGN iteration method involves the well-known GN iteration method and the Picard iteration method as special cases. Theoretical analyses show that the RGN iteration method is well defined and globally linearly convergent under suitable conditions. In addition, a specific sufficient condition is studied when the coefficient matrix A is symmetric positive definite. Finally, two numerical experiments arising from the linear complementarity problems are used to illustrate the effectiveness of the new RGN iteration method.
引用
收藏
页码:1258 / 1275
页数:18
相关论文
共 39 条
[1]   Modulus-based synchronous multisplitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi ;
Zhang, Li-Li .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) :425-439
[2]   Modulus-based matrix splitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (06) :917-933
[3]   On the global convergence of the inexact semi-smooth Newton method for absolute value equation [J].
Bello Cruz, J. Y. ;
Ferreira, O. P. ;
Prudente, L. F. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) :93-108
[4]   A globally and quadratically convergent method for absolute value equations [J].
Caccetta, Louis ;
Qu, Biao ;
Zhou, Guanglu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (01) :45-58
[5]   Two-step modulus-based matrix splitting iteration methods for implicit complementarity problems [J].
Cao, Yang ;
Wang, An .
NUMERICAL ALGORITHMS, 2019, 82 (04) :1377-1394
[6]   A modified modulus method for symmetric positive-definite linear complementarity problems [J].
Dong, Jun-Liang ;
Jiang, Mei-Qun .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (02) :129-143
[7]   A new two-step iterative method for solving absolute value equations [J].
Feng, Jingmei ;
Liu, Sanyang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[8]   On Generalized Traub's Method for Absolute Value Equations [J].
Haghani, Farhad Khaksar .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (02) :619-625
[9]   A generalized Newton method for absolute value equations associated with second order cones [J].
Hu, Sheng-Long ;
Huang, Zheng-Hai ;
Zhang, Qiong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) :1490-1501
[10]   A Preconditioned AOR Iterative Method for the Absolute Value Equations [J].
Li, Cui-Xia .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (02)