The linear programming bound for codes over finite Frobenius rings

被引:19
作者
Byrne, Eimear [1 ]
Greferath, Marcus
O'Sullivan, Michael E.
机构
[1] Natl Univ Ireland Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
关键词
codes over rings; finite Frobenius rings; homogeneous weights; linear-programming bound;
D O I
10.1007/s10623-006-9035-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In traditional algebraic coding theory the linear-programming bound is one of the most powerful and restrictive bounds for the existence of both linear and non-linear codes. This article develops a linear-programming bound for block codes on finite Frobenius rings.
引用
收藏
页码:289 / 301
页数:13
相关论文
共 24 条
[1]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[2]  
Bosma Wieb, 1993, COMPUTATIONAL ALGEBR
[3]   Z2k-Linear codes [J].
Carlet, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1543-1547
[4]  
Constantinescu I., 1997, Problemy Peredachi Informatsii, V33, P22
[5]  
CONSTANTINESCU I, 1995, THESIS TU MUNCHEN
[6]   On the optimal Z4 codes of type II and length 16 [J].
Duursma, IM ;
Greferath, M ;
Schmidt, SE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (01) :77-82
[7]   A Z8-linear lift of the binary Golay code and a nonlinear binary (96,237,24)-code [J].
Duursma, IM ;
Greferath, M ;
Litsyn, SN ;
Schmidt, SE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) :1596-1598
[8]  
DUURSMA IM, 2001, P OPT COD OC 2001 ST, P59
[9]  
ERICSON T, 1997, APPL ALGEBRA ENG COM, V8
[10]  
*GLPK, GNU LIN PROGR KIT