Sandwich structured Ni3S2-MoS2-Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting

被引:73
作者
Li, Youcai [1 ]
Wu, Xiaoyu [2 ]
Wang, Jiepeng [2 ]
Wei, Haixing [2 ]
Zhang, Shiyuan [2 ]
Zhu, Shengli [1 ]
Li, Zhaoyang [1 ]
Wu, Shuilin [1 ]
Jiang, Hui [1 ]
Liang, Yanqin [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[2] CSIC, Purificat Equipment Res Inst, Handan 056027, Peoples R China
基金
中国国家自然科学基金;
关键词
Molybdenum disulfide; Transition metal sulfides; Hydrogen evolution reaction; Overall seawater splitting; Self-supporting electrodes; HYDROGEN EVOLUTION; NI3S2; NANOWIRES; NI FOAM; EFFICIENT; MOS2; DESIGN;
D O I
10.1016/j.electacta.2021.138833
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The exploitation of cost-effective bifunctional seawater electrocatalyst is an attractive technology to generate hydrogen fuel. Sustainable seawater splitting requires catalysts with robust hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activity as well as superior chloride corrosion resistance in the salty electrolyte. Here we designed a sandwich-like Ni3S2-MoS2-Ni3S2@Ni foam (NMN-NF) catalyst on the surface of Ni foam by stacking Ni3S2 coatings as top and bottom protective layers (chloride anticorrosion), and MoS2 as an interlayer to trigger both HER and OER in salty water. The unique sandwich structure endowed NMN-NF catalysts with excellent bifunctional catalytic activity and long-term durability in alkaline seawater electrolytes. Taking advantage of the synergistic effect between MoS2 and Ni-3 S-2, NMN NF delivered a current density of 100 mA/cm(2) at a low voltage of 1.82 V under operating over 100 h in alkaline seawater, allowing them a promising catalyst towards practical application for efficient seawater splitting. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Nature-Inspired, Graphene-Wrapped 3D MoS2 Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries [J].
Anwer, Shoaib ;
Huang, Yongxin ;
Li, Baosong ;
Govindan, Bharath ;
Liao, Kin ;
Cantwell, Wesley J. ;
Wu, Feng ;
Chen, Renjie ;
Zheng, Lianxi .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (25) :22323-22331
[2]   Coplanar interdigitated band electrodes for electrosynthesis. Part 4: Application to sea water electrolysis [J].
Belmont, C ;
Ferrigno, R ;
Leclerc, O ;
Girault, HH .
ELECTROCHIMICA ACTA, 1998, 44 (04) :597-603
[3]   ELECTRODES FOR GENERATION OF HYDROGEN AND OXYGEN FROM SEAWATER [J].
BENNETT, JE .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1980, 5 (04) :401-408
[4]   THE MECHANISM OF THE CATHODIC HYDROGEN EVOLUTION REACTION [J].
BOCKRIS, JOM ;
POTTER, EC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1952, 99 (04) :169-186
[5]   Targeted Synthesis of 2H-and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution [J].
Chang, Kun ;
Hai, Xiao ;
Pang, Hong ;
Zhang, Huabin ;
Shi, Li ;
Liu, Guigao ;
Liu, Huimin ;
Zhao, Guixia ;
Li, Mu ;
Ye, Jinhua .
ADVANCED MATERIALS, 2016, 28 (45) :10033-10041
[6]   Raman spectroscopy of nickel sulfide Ni3S2 [J].
Cheng, Zhe ;
Abernathy, Harry ;
Liu, Meilin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (49) :17997-18000
[7]   Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide [J].
Chou, Stanley S. ;
Sai, Na ;
Lu, Ping ;
Coker, Eric N. ;
Liu, Sheng ;
Artyushkova, Kateryna ;
Luk, Ting S. ;
Kaehr, Bryan ;
Brinker, C. Jeffrey .
NATURE COMMUNICATIONS, 2015, 6
[8]   Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea [J].
d'Amore-Domenech, Rafael ;
Santiago, Oscar ;
Leo, Teresa J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 133
[9]   Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis [J].
Dionigi, Fabio ;
Reier, Tobias ;
Pawolek, Zarina ;
Gliech, Manuel ;
Strasser, Peter .
CHEMSUSCHEM, 2016, 9 (09) :962-972
[10]   MoS2/N-doped graphene aerogles composite anode for high performance sodium/potassium ion batteries [J].
Dong, Xiaoyu ;
Xing, Zheng ;
Zheng, Guojun ;
Gao, Xinran ;
Hong, Haiping ;
Ju, Zhicheng ;
Zhuang, Quanchao .
ELECTROCHIMICA ACTA, 2020, 339