A community effort to assess and improve drug sensitivity prediction algorithms

被引:516
作者
Costello, James C. [1 ,2 ]
Heiser, Laura M. [3 ]
Georgii, Elisabeth [4 ]
Gonen, Mehmet [4 ]
Menden, Michael P. [5 ]
Wang, Nicholas J. [3 ]
Bansal, Mukesh [6 ]
Ammad-ud-din, Muhammad [4 ]
Hintsanen, Petteri [7 ]
Khan, Suleiman A. [4 ]
Mpindi, John-Patrick [7 ]
Kallioniemi, Olli [7 ]
Honkela, Antti [8 ]
Aittokallio, Tero [7 ]
Wennerberg, Krister [7 ]
Collins, James J. [1 ,2 ,9 ]
Gallahan, Dan [10 ]
Singer, Dinah [10 ]
Saez-Rodriguez, Julio [5 ]
Kaski, Samuel [4 ,8 ]
Gray, Joe W. [3 ]
Stolovitzky, Gustavo [11 ]
机构
[1] Boston Univ, Howard Hughes Med Inst, Boston, MA 02215 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[3] Oregon Hlth & Sci Univ, Dept Biomed Engn, Portland, OR 97201 USA
[4] Aalto Univ, Helsinki Inst Informat Technol HIIT, Dept Informat & Comp Sci, Espoo, Finland
[5] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
[6] Columbia Univ, Dept Syst Biol, Ctr Computat Biol & Bioinformat, New York, NY USA
[7] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki, Finland
[8] Univ Helsinki, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, SF-00510 Helsinki, Finland
[9] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[10] NCI, NIH, Bethesda, MD 20892 USA
[11] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
芬兰科学院; 美国国家卫生研究院;
关键词
CANCER CELL-LINES; HUMAN BREAST; GENES; ARRAY; IDENTIFICATION; ENCYCLOPEDIA; SIGNATURES; RESPONSES; RESOURCE; WISDOM;
D O I
10.1038/nbt.2877
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.
引用
收藏
页码:1202 / U57
页数:13
相关论文
共 49 条
  • [1] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [2] A single-array preprocessing method for estimating full-resolution raw copy numbers from all Affymetrix genotyping arrays including GenomeWideSNP 5 & 6
    Bengtsson, Henrik
    Wirapati, Pratyaksha
    Speed, Terence P.
    [J]. BIOINFORMATICS, 2009, 25 (17) : 2149 - 2156
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel
    Bussey, KJ
    Chin, K
    Lababidi, S
    Reimers, M
    Reinhold, WC
    Kuo, WL
    Gwadry, F
    Jain, A
    Kouros-Mehr, H
    Fridlyand, J
    Jain, A
    Collins, C
    Nishizuka, S
    Tonon, G
    Roschke, A
    Gehlhaus, K
    Kirsch, I
    Scudiero, DA
    Gray, JW
    Weinstein, JN
    [J]. MOLECULAR CANCER THERAPEUTICS, 2006, 5 (04) : 853 - 867
  • [5] Multitask learning
    Caruana, R
    [J]. MACHINE LEARNING, 1997, 28 (01) : 41 - 75
  • [6] Seeking the Wisdom of Crowds Through Challenge-Based Competitions in Biomedical Research
    Costello, J. C.
    Stolovitzky, G.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2013, 93 (05) : 396 - 398
  • [7] The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
    Curtis, Christina
    Shah, Sohrab P.
    Chin, Suet-Feung
    Turashvili, Gulisa
    Rueda, Oscar M.
    Dunning, Mark J.
    Speed, Doug
    Lynch, Andy G.
    Samarajiwa, Shamith
    Yuan, Yinyin
    Graef, Stefan
    Ha, Gavin
    Haffari, Gholamreza
    Bashashati, Ali
    Russell, Roslin
    McKinney, Steven
    Langerod, Anita
    Green, Andrew
    Provenzano, Elena
    Wishart, Gordon
    Pinder, Sarah
    Watson, Peter
    Markowetz, Florian
    Murphy, Leigh
    Ellis, Ian
    Purushotham, Arnie
    Borresen-Dale, Anne-Lise
    Brenton, James D.
    Tavare, Simon
    Caldas, Carlos
    Aparicio, Samuel
    [J]. NATURE, 2012, 486 (7403) : 346 - 352
  • [8] Modeling precision treatment of breast cancer
    Daemen, Anneleen
    Griffith, Obi L.
    Heiser, Laura M.
    Wang, Nicholas J.
    Enache, Oana M.
    Sanborn, Zachary
    Pepin, Francois
    Durinck, Steffen
    Korkola, James E.
    Griffith, Malachi
    Hur, Joe S.
    Huh, Nam
    Chung, Jongsuk
    Cope, Leslie
    Fackler, Mary Jo
    Umbricht, Christopher
    Sukumar, Saraswati
    Seth, Pankaj
    Sukhatme, Vikas P.
    Jakkula, Lakshmi R.
    Lu, Yiling
    Mills, Gordon B.
    Cho, Raymond J.
    Collisson, Eric A.
    van't Veer, Laura J.
    Spellman, Paul T.
    Gray, Joe W.
    [J]. GENOME BIOLOGY, 2013, 14 (10):
  • [9] Genome-wide Methylation Analysis Identifies Genes Specific to Breast Cancer Hormone Receptor Status and Risk of Recurrence
    Fackler, Mary Jo
    Umbricht, Christopher B.
    Williams, Danielle
    Argani, Pedram
    Cruz, Leigh-Ann
    Merino, Vanessa F.
    Teo, Wei Wen
    Zhang, Zhe
    Huang, Peng
    Visvananthan, Kala
    Marks, Jeffrey
    Ethier, Stephen
    Gray, Joe W.
    Wolff, Antonio C.
    Cope, Leslie M.
    Sukumar, Saraswati
    [J]. CANCER RESEARCH, 2011, 71 (19) : 6195 - 6207
  • [10] Fallahi-Sichani M, 2013, NAT CHEM BIOL, V9, P708, DOI [10.1038/NCHEMBIO.1337, 10.1038/nchembio.1337]