Intrusion Detection using An Ensemble of Support Vector Machines

被引:5
|
作者
Kumar, G. Kishor [1 ]
Kumar, R. Raja [1 ]
Basha, M. Suleman [1 ]
Reddy, K. Nageswara [1 ]
机构
[1] RGMCET, Dept CSE, Nandyal, India
来源
JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES | 2019年
关键词
Bootstrapping; classification; svm; ensemble techniques; intrusion detection;
D O I
10.26782/jmcms.spl.3/2019.09.00020
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper "an ensemble of Support Vector Machines (SVM)" for network-based intrusion detection. Bootstrapping is applied to derive various training sets from the given training set. Then a SVM is derived for each training set. The decisions of all SVMS is taken and majority voting is considered to classify the given query pattern as a normal or an anomalous one. We have shown the results of applying an ensemble of Support Vector Machines to the two standard data sets ,viz., 1999 KDDCupandCreditcarddatasets.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [1] Improving Intrusion Detection with Adaptive Support Vector Machines
    Macek, N.
    Dordevic, B.
    Timcenko, V.
    Bojovic, M.
    Milosavljevic, M.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2014, 20 (07) : 57 - 60
  • [2] Intrusion detection Based on Fuzzy support vector machines
    Du Hongle
    Teng Shaohua
    Zhu Qingfang
    NSWCTC 2009: INTERNATIONAL CONFERENCE ON NETWORKS SECURITY, WIRELESS COMMUNICATIONS AND TRUSTED COMPUTING, VOL 2, PROCEEDINGS, 2009, : 639 - +
  • [3] Application of Improved Support Vector Machines in Intrusion Detection
    Zhang, Yongli
    Zhu, Yanwei
    2010 2ND INTERNATIONAL CONFERENCE ON E-BUSINESS AND INFORMATION SYSTEM SECURITY (EBISS 2010), 2010, : 56 - 59
  • [4] An intrusion detection algorithm based on bag representation with ensemble support vector machine in cloud computing
    Wei, Jinxia
    Long, Chun
    Li, Jiawei
    Zhao, Jing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (24)
  • [5] Biased support vector machines and kernel methods for intrusion detection
    Yendrapalli, K.
    Mukkamala, S.
    Sung, A. H.
    Ribeiro, B.
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 321 - +
  • [6] HEART ARRHYTHMIA DETECTION USING SUPPORT VECTOR MACHINES
    Khazaee, Ali
    Ebrahimzadeh, Ataollah
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2013, 19 (01) : 1 - 9
  • [7] High Efficient Intrusion Detection Methodology with Twin Support Vector Machines
    Ding, Xuejun
    Zhang, Guiling
    Ke, Yongzhen
    Ma, Baolin
    Li, Zhichao
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 1, 2008, : 560 - +
  • [8] EnsembleSVM: A Library for Ensemble Learning Using Support Vector Machines
    Claesen, Marc
    De Smet, Frank
    Suykens, Johan A. K.
    De Moor, Bart
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 141 - 145
  • [9] Seismic detection using support vector machines
    Ruano, A. E.
    Madureira, G.
    Barros, O.
    Khosravani, H. R.
    Ruano, M. G.
    Ferreira, P. M.
    NEUROCOMPUTING, 2014, 135 : 273 - 283
  • [10] Nested One-Class Support Vector Machines for Network Intrusion Detection
    Quoc Thong Nguyen
    Kim Phuc Tran
    Castagliola, Philippe
    Truong Thu Huong
    Minh Kha Nguyen
    Lardjane, Salim
    2018 IEEE SEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (IEEE ICCE 2018), 2018, : 7 - 12