Covering Problems in Edge- and Node-Weighted Graphs

被引:0
作者
Fukunaga, Takuro [1 ]
机构
[1] Natl Inst Informat, Tokyo, Japan
来源
ALGORITHM THEORY - SWAT 2014 | 2014年 / 8503卷
关键词
APPROXIMATION ALGORITHMS; MULTICUT; FLOW;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discusses the graph covering problem in which a set of edges in an edge-and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 28 条
[1]  
Bateni M, 2013, LECT NOTES COMPUT SC, V7965, P81, DOI 10.1007/978-3-642-39206-1_8
[2]   Linear time algorithms for generalized edge dominating set problems [J].
Berger, Andre ;
Parekh, Ojas .
ALGORITHMICA, 2008, 50 (02) :244-254
[3]   Approximability of the capacitated b-edge dominating set problem [J].
Berger, Andre ;
Fukunaga, Takuro ;
Nagamochi, Hiroshi ;
Parekh, Ojas .
THEORETICAL COMPUTER SCIENCE, 2007, 385 (1-3) :202-213
[4]   Linear Time Algorithms for Generalized Edge Dominating Set Problems (vol 50, pg 244, 2008) [J].
Berger, Andre ;
Parekh, Ojas .
ALGORITHMICA, 2012, 62 (1-2) :633-634
[5]   Steiner Tree Approximation via Iterative Randomized Rounding [J].
Byrka, Jaroslaw ;
Grandoni, Fabrizio ;
Rothvoss, Thomas ;
Sanita, Laura .
JOURNAL OF THE ACM, 2013, 60 (01)
[6]  
Carr R, 2001, J COMB OPTIM, V5, P317, DOI 10.1023/A:1011445210568
[7]   On the hardness of approximating MULTICUT and SPARSEST-CUT [J].
Chawla, Shuchi ;
Krauthgamer, Robert ;
Kumar, Ravi ;
Rabani, Yuval ;
Sivakumar, D. .
COMPUTATIONAL COMPLEXITY, 2006, 15 (02) :94-114
[8]  
Chekuri Chandra, 2012, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Proceedings 15th International Workshop, APPROX 2012 and 16th International Workshop, RANDOM 2012, P98, DOI 10.1007/978-3-642-32512-0_9
[9]   THE COMPLEXITY OF MULTITERMINAL CUTS [J].
DAHLHAUS, E ;
JOHNSON, DS ;
PAPADIMITRIOOU, CH ;
SEYMOUR, PD ;
YANNAKAKIS, M .
SIAM JOURNAL ON COMPUTING, 1994, 23 (04) :864-894
[10]   A 2-approximation algorithm for the minimum weight edge dominating set problem [J].
Fujito, T ;
Nagamochi, H .
DISCRETE APPLIED MATHEMATICS, 2002, 118 (03) :199-207