Smart-PGSim: Using Neural Network to Accelerate AC-OPF Power Grid Simulation

被引:33
作者
Dong, Wenqian [1 ]
Xie, Zhen [2 ]
Kestor, Gokcen [3 ]
Li, Dong [1 ]
机构
[1] UC Merced, PNNL, Merced, CA 95343 USA
[2] UC Merced, Merced, CA USA
[3] Pacific Northwest Natl Lab, Washington, DC USA
来源
PROCEEDINGS OF SC20: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC20) | 2020年
基金
美国国家科学基金会;
关键词
LOAD;
D O I
10.1109/SC41405.2020.00067
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we address the problem of accelerating complex power-grid simulation through machine learning (ML). Specifically, we develop a framework, Smart-PGSim, which generates multitask-learning (MTL) neural network (NN) models to predict the initial values of variables critical to the problem convergence. MTL models allow information sharing when predicting multiple dependent variables while including customized layers to predict individual variables. We show that, to achieve the required accuracy, it is paramount to embed domain-specific constraints derived from the specific power-grid components in the MTL model. Smart-PGSim then employs the predicted initial values as a high-quality initial condition for the power-grid numerical solver (warm start), resulting in both higher performance compared to state-of-the-art solutions while maintaining the required accuracy. Smart-PGSim brings 2.60x speedup on average (up to 3.28x) computed over 10,00 problems, without losing solution optimality.
引用
收藏
页数:15
相关论文
共 51 条
  • [1] Planck 2015 results XIII. Cosmological parameters
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [2] [Anonymous], 2014, P 18 POW SYST COMP C
  • [3] [Anonymous], 2016, IEEE T SMART GRID
  • [4] Baker Kyri, 2019, ARXIV PREPRINT ARXIV
  • [5] Multitask learning
    Caruana, R
    [J]. MACHINE LEARNING, 1997, 28 (01) : 41 - 75
  • [6] Efficient large-scale power grid analysis based on preconditioned Krylov-subspace iterative methods
    Chen, TH
    Chen, CCP
    [J]. 38TH DESIGN AUTOMATION CONFERENCE PROCEEDINGS 2001, 2001, : 559 - 562
  • [7] Chetlur Sharan, 2014, ARXIV PREPRINT ARXIV
  • [8] Solving security constrained optimal power flow problems by a structure exploiting interior point method
    Chiang, Naiyuan
    Grothey, Andreas
    [J]. OPTIMIZATION AND ENGINEERING, 2015, 16 (01) : 49 - 71
  • [9] Transmission management in the deregulated environment
    Christie, RD
    Wollenberg, BF
    Wangensteen, I
    [J]. PROCEEDINGS OF THE IEEE, 2000, 88 (02) : 170 - 195
  • [10] Cohen Jason M, 1997, US Patent, Patent No. [5,621,654, 5621654]