Bohmian mechanics with discrete operators

被引:1
作者
Hyman, R
Caldwell, SA
Dalton, E
机构
[1] AFL, CIO, Ctr Strateg Res, Chicago, IL 60607 USA
[2] De Paul Univ, Dept Phys, Chicago, IL 60614 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 44期
关键词
D O I
10.1088/0305-4470/37/44/L02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A deterministic and time reversible Bohmian mechanics for operators with continuous and discrete spectra is presented. Randomness enters only through initial conditions. Operators with discrete spectra are incorporated into Bohmian mechanics by associating with each operator a continuous variable in which a finite range of the continuous variable corresponds to the same discrete eigenvalue. In this way a deterministic and time reversible Bohmian mechanics can handle the creation and annihilation of particles. The formalism does not depend on the details of the Hamiltonian. Furthermore, many consistent choices, are available for. the dynamics. Examples are given and generalizations are discussed.
引用
收藏
页码:L547 / L558
页数:12
相关论文
共 50 条
[21]   Structuralist approaches to Bohmian mechanics [J].
Lorenzo Lorenzetti .
Synthese, 2022, 200
[22]   Properties of the trajectories in Bohmian mechanics [J].
Frisk, H .
PHYSICS LETTERS A, 1997, 227 (3-4) :139-142
[23]   ON THE GLOBAL EXISTENCE OF BOHMIAN MECHANICS [J].
BERNDL, K ;
DURR, D ;
GOLDSTEIN, S ;
PERUZZI, G ;
ZANGHI, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (03) :647-673
[24]   On the supposed surrealism of Bohmian mechanics [J].
Becker, L .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (6-7) :533-538
[25]   Perturbation theory in Bohmian mechanics [J].
Terenzi, A ;
Cannata, F .
FOUNDATIONS OF PHYSICS LETTERS, 1997, 10 (04) :347-356
[26]   On Ontological Alternatives to Bohmian Mechanics [J].
Filk, Thomas .
ENTROPY, 2018, 20 (06)
[27]   Bohmian mechanics and consistent histories [J].
Griffiths, RB .
PHYSICS LETTERS A, 1999, 261 (5-6) :227-234
[28]   Properties of the trajectories in Bohmian mechanics [J].
Department of Mathematics, University of Växjö, S-351 95 Växjö, Sweden .
Phys Lett Sect A Gen At Solid State Phys, 3-4 (139-142)
[29]   On the Supposed Surrealism of Bohmian Mechanics [J].
Becker, L. .
Zeitschrift fuer Naturforschung. Section A: Physical Sciences, 52 (6-7)
[30]   Situated observation in Bohmian mechanics [J].
Barrett, Jeffrey A. .
STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2021, 88 :345-357