Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE

被引:140
作者
Holm, DD
Staley, MF
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
关键词
solitary waves; solitons; peakons; nonlinear evolution; turbulence modeling;
D O I
10.1016/S0375-9601(03)00114-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study exchange of stability in the dynamics of solitary wave solutions under changes in the nonlinear balance in a 1 + 1 evolutionary partial differential equation related both to shallow water waves and to turbulence. We find that solutions of the equation m(t) + um(x) + bu(x)m = vm(xx) with m = u - alpha(2)u(xx) for fluid velocity u(x, t) change their behavior at the special values b = 0,+/-1, +/-2, +/-3. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 19 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]   The Camassa-Holm equations and turbulence [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICA D, 1999, 133 (1-4) :49-65
[4]   Camassa-Holm equations as a closure model for turbulent channel and pipe flow [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5338-5341
[5]   A connection between the Camassa-Holm equations and turbulent flows in channels and pipes [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICS OF FLUIDS, 1999, 11 (08) :2343-2353
[6]   Direct numerical simulations of the Navier-Stokes alpha model [J].
Chen, SY ;
Holm, DD ;
Margolin, LG ;
Zhang, RY .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 133 (1-4) :66-83
[7]  
Constantin P, 1989, Integral manifolds and inertial manifolds for dissipative partial differential equations, V70
[8]  
Degasperis D., 1999, SYMMETRY PERTURBATIO, P23
[9]   An integrable shallow water equation with linear and nonlinear dispersion [J].
Dullin, HR ;
Gottwald, GA ;
Holm, DD .
PHYSICAL REVIEW LETTERS, 2001, 87 (19) :1-194501
[10]   The three dimensional viscous camassa-holm equations, and their relation to the navier-stokes equations and turbulence theory [J].
Foias C. ;
Holm D.D. ;
Titi E.S. .
Journal of Dynamics and Differential Equations, 2002, 14 (1) :1-35