Interfacial energies in nanocrystalline complex oxides

被引:22
作者
Castro, Ricardo H. R. [1 ]
机构
[1] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Surface; Grain boundary; Thermodynamics; Oxides; MOLECULAR-DYNAMICS SIMULATIONS; GRAIN-BOUNDARY ENERGIES; PHASE-STABILITY; SURFACE-ENERGY; ATOMISTIC SIMULATION; WATER-ADSORPTION; GROWTH KINETICS; MGAL2O4; SPINEL; THERMODYNAMICS; DENSIFICATION;
D O I
10.1016/j.cossms.2021.100911
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a brief description of the role of interfacial energies in the understanding and control of nanocrystalline complex oxides in both particulate and bulk forms. Interfacial energies are fundamental parameters in microstructural evolution processes such as phase transformation, grain growth, and sintering. Although generally considered constant driving forces, experimental evidences confirm the possibility of intentional modification of both surface and grain boundary energies in oxide systems via ionic doping. This opened the perspective for a systematic understanding of their roles as refining parameters in microstructural control during processing and in operation. In this work, the theoretical framework in the context of Gibbs adsorption isotherm and the formation of dopant excess (i.e. interfacial solute segregation) is introduced in a similar manner as formalized for liquid systems. A collection of data demonstrating interfacial energy control in oxides is presented and discussed in terms of microstructural relationships with specific examples. The data advocates for a paradigm shift on nanocrystalline processing control from a traditionally kinetically oriented perspective to a more balanced viewpoint in which thermodynamics can play a governing role, especially at moderate temperatures. The work is not an extensive review, but rather has the goal of introducing the reader to this growing research topic.
引用
收藏
页数:10
相关论文
共 84 条
[1]   Sintering processes in direct ink write additive manufacturing: A mesoscopic modeling approach [J].
Abdeljawad, Fadi ;
Bolintineanu, Dan S. ;
Cook, Adam ;
Brown-Shaklee, Harlan ;
DiAntonio, Christopher ;
Kammler, Daniel ;
Roach, Allen .
ACTA MATERIALIA, 2019, 169 :60-75
[2]   Dynamics, structure and energetics of the (111), (011) and (001) surfaces of ceria [J].
Baudin, M ;
Wójcik, M ;
Hermansson, K .
SURFACE SCIENCE, 2000, 468 (1-3) :51-61
[3]   MOLECULAR-DYNAMICS SIMULATIONS OF ALPHA-ALUMINA AND GAMMA-ALUMINA SURFACES [J].
BLONSKI, S ;
GAROFALINI, SH .
SURFACE SCIENCE, 1993, 295 (1-2) :263-274
[4]   A Strategy to Mitigate Grain Boundary Blocking in Nanocrystalline Zirconia [J].
Bokov, Arseniy ;
Aguiar, Jeffery A. ;
Gong, Matthew L. ;
Nikonov, Alexey ;
Castro, Ricardo H. R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (46) :26344-26352
[5]   Energetic design of grain boundary networks for toughening of nanocrystalline oxides [J].
Bokov, Arseniy ;
Zhang, Shenli ;
Feng, Lin ;
Dillon, Shen J. ;
Faller, Roland ;
Castro, Ricardo H. R. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (12) :4260-4267
[6]   Annealing control of hydrothermally grown hematite nanorods: Implication of structural changes and Cl concentration on weak ferromagnetism [J].
Carvalho-Jr, W. M. ;
Mendonca-Ferreira, L. ;
Costa, F. N. ;
Ferreira, F. F. ;
Muche, D. N. F. ;
Tofanello, R. A. ;
Castro, R. H. R. ;
Souza, F. L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 799 :83-88
[7]  
Castro R. H. R., 2019, Cerâmica, V65, P122
[8]  
Castro R.HR., 2015, **DROPPED REF**
[9]   Microstructure and structure of NiO-SnO2 and Fe2O3-SnO2 systems [J].
Castro, RHR ;
Hidalgo, P ;
Muccillo, R ;
Gouvêa, D .
APPLIED SURFACE SCIENCE, 2003, 214 (1-4) :172-177
[10]   Sintering and Nanostability: The Thermodynamic Perspective [J].
Castro, Ricardo H. R. ;
Gouvea, Douglas .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (04) :1105-1121