Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs

被引:17
作者
Buttazzo, Giuseppe [1 ]
Champion, Thierry [2 ]
De Pascale, Luigi [3 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Toulon & Var, Lab IMATH, CS 60584, F-83041 Toulon 9, France
[3] Univ Firenze, Dipartimento Matemat & Informat, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Multimarginal optimal transportation; Monge-Kantorovich problem; Duality theory; Coulomb cost;
D O I
10.1007/s00245-017-9403-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider some repulsive multimarginal optimal transportation problems which include, as a particular case, the Coulomb cost. We prove a regularity property of the minimizers (optimal transportation plan) from which we deduce existence and some basic regularity of a maximizer for the dual problem (Kantorovich potential). This is then applied to obtain some estimates of the cost and to the study of continuity properties.
引用
收藏
页码:185 / 200
页数:16
相关论文
共 28 条
  • [1] [Anonymous], 1998, PROB APPL S, DOI 10.1007/b98894
  • [2] A general duality theorem for the Monge-Kantorovich transport problem
    Beiglboeck, Mathias
    Leonard, Christian
    Schachermayer, Walter
    [J]. STUDIA MATHEMATICA, 2012, 209 (02) : 151 - 167
  • [3] Optimal-transport formulation of electronic density-functional theory
    Buttazzo, Giuseppe
    De Pascale, Luigi
    Gori-Giorgi, Paola
    [J]. PHYSICAL REVIEW A, 2012, 85 (06):
  • [4] Carlier G, 2003, J CONVEX ANAL, V10, P517
  • [5] Optimal transportation for the determinant
    Carlier, Guillaume
    Nazaret, Bruno
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (04) : 678 - 698
  • [6] Colombo M., 2013, ANN MAT PUR APPL, P1
  • [7] Multimarginal Optimal Transport Maps for One-dimensional Repulsive Costs
    Colombo, Maria
    De Pascale, Luigi
    Di Marino, Simone
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (02): : 350 - 368
  • [8] Density Functional Theory and Optimal Transportation with Coulomb Cost
    Cotar, Codina
    Friesecke, Gero
    Klueppelberg, Claudia
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (04) : 548 - 599
  • [9] OPTIMAL TRANSPORT WITH COULOMB COST. APPROXIMATION AND DUALITY
    De Pascale, Luigi
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06): : 1643 - 1657
  • [10] N-density representability and the optimal transport limit of the Hohenberg-Kohn functional
    Friesecke, Gero
    Mendl, Christian B.
    Pass, Brendan
    Cotar, Codina
    Klueppelberg, Claudia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (16)