Modified frequency-based term weighting schemes for text classification

被引:76
作者
Sabbah, Thabit [1 ,2 ,3 ]
Selamat, Ali [2 ,3 ,7 ]
Selamat, Md Hafiz [2 ]
Al-Anzi, Fawaz S. [4 ]
Viedma, Enrique Herrera [5 ,6 ]
Krejcar, Ondrej [7 ]
Fujita, Hamido [8 ]
机构
[1] Al Quds Open Univ QOU, Fac Technol & Appl Sci, POB 1804, Rammallah, Palestine
[2] Univ Teknol Malaysia, Fac Comp, Utm Johor Bahru 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, UTM IRDA Ctr Excellence, Utm Johor Bahru 81310, Johor, Malaysia
[4] Kuwait Univ, Comp Engn Dept, POB 5969, Safat 13060, Kuwait
[5] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[6] King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21589, Saudi Arabia
[7] Univ Hradec Kralove, FIM, Ctr Basic & Appl Res, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[8] Iwate Prefectural Univ, 152-52 Sugo, Takizawa, Iwate 0200193, Japan
关键词
Term-weighting; Missing features; Absent terms; Vector Space Model; Text classification; EXTREME LEARNING-MACHINE; SUPPORT VECTOR MACHINE; FEATURE-SELECTION; NEURAL-NETWORKS; CATEGORIZATION; WEB; ALGORITHM; SYSTEM;
D O I
10.1016/j.asoc.2017.04.069
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid growth of textual content on the Internet, automatic text categorization is a comparatively more effective solution in information organization and knowledge management. Feature selection, one of the basic phases in statistical-based text categorization, crucially depends on the term weighting methods In order to improve the performance of text categorization, this paper proposes four modified frequency-based term weighting schemes namely; mTF, mTFIDF, TFmIDF, and mTFmIDF. The proposed term weighting schemes take the amount of missing terms into account calculating the weight of existing terms. The proposed schemes show the highest performance for a SVM classifier with a micro-average F1 classification performance value of 97%. Moreover, benchmarking results on Reuters-21578, 20Newsgroups, and WebKB text-classification datasets, using different classifying algorithms such as SVM and KNN show that the proposed schemes mTF, mTFIDF, and mTFmIDF outperform other weighting schemes such as TF, TFIDF, and Entropy. Additionally, the statistical significance tests show a significant enhancement of the classification performance based on the modified schemes. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 63 条
[1]  
Agrawal R, 2013, IEEE INT ADV COMPUT, P877
[2]  
Al-Zaidy R., 2011, P P 2011 ACM S APPL, P172
[3]  
Alghamdi HM, 2012, 2012 4TH CONFERENCE ON DATA MINING AND OPTIMIZATION (DMO), P6, DOI [10.1109/CEC.2012.6252960, 10.1109/DMO.2012.6329790]
[4]   An unsupervised approach to generating generic summaries of documents [J].
Alguliyev, Rasim M. ;
Aliguliyev, Ramiz M. ;
Isazade, Nijat R. .
APPLIED SOFT COMPUTING, 2015, 34 :236-250
[5]  
[Anonymous], 1997, ICML
[6]   A Comprehensive Empirical Comparison of Modern Supervised Classification and Feature Selection Methods for Text Categorization [J].
Aphinyanaphongs, Yindalon ;
Fu, Lawrence D. ;
Li, Zhiguo ;
Peskin, Eric R. ;
Efstathiadis, Efstratios ;
Aliferis, Constantin F. ;
Statnikov, Alexander .
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2014, 65 (10) :1964-1987
[7]   Empirical study of feature selection methods based on individual feature evaluation for classification problems [J].
Arauzo-Azofra, Antonio ;
Aznarte, Jose Luis ;
Benitez, Jose M. .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) :8170-8177
[8]   The aspect Bernoulli model: multiple causes of presences and absences [J].
Bingham, Ella ;
Kaban, Ata ;
Fortelius, Mikael .
PATTERN ANALYSIS AND APPLICATIONS, 2009, 12 (01) :55-78
[9]  
Blockeel H, 2006, LECT NOTES ARTIF INT, V4213, P18
[10]   Robust approach for estimating probabilities in Naive-Bayes Classifier for gene expression data [J].
Chandra, B. ;
Gupta, Manish .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) :1293-1298