Performance of advanced automotive fuel cell systems with heat rejection constraint

被引:28
作者
Ahluwalia, R. K. [1 ]
Wang, X. [1 ]
Steinbach, A. J. [2 ]
机构
[1] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] 3M Fuel Cell Components Program, St Paul, MN USA
关键词
Polymer electrolyte fuel cells; Automotive application; Heat rejection; Kinetic and mass transfer losses; Mass transfer in cathode catalysts; Oxygen reduction reaction kinetics; Stability and durability; KINETICS; DURABILITY;
D O I
10.1016/j.jpowsour.2016.01.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although maintaining polymer electrolyte fuel cells (PEFC) at temperatures below 80 degrees C is desirable for extended durability and enhanced performance, the automotive application also requires the PEFC stacks to operate at elevated temperatures and meet the heat rejection constraint, stated as Q/Delta T < 1.45 kW/degrees C, where Q is the stack heat load for an 80-kW(e) net power PEFC system and Delta T is the difference between the stack coolant temperature and 40 degrees C ambient temperature. We have developed a method to determine the optimum design and operating conditions for an automotive stack subject to this Q/Delta T constraint, and illustrate it by applying it to a state-of-the-art stack with nano-structured thin film ternary catalysts in the membrane electrode assemblies. In the illustrative example, stack coolant temperatures >90 degrees C, stack inlet pressures >2 atm, and cathode stoichiometries <2 are needed to satisfy the Q/Delta T constraint in a cost effective manner. The reference PEFC stack with 0.1 mg/cm(2) Pt loading in the cathode achieves 753 mW cm(-2) power density at the optimum conditions for heat rejection, compared to 964 mW cm(-2) in the laboratory cell at the same cell voltage (663 mV) and pressure (2.5 atm) but lower temperature (85 degrees C), higher cathode stoichiometry (2), and 100% relative humidity. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 191
页数:14
相关论文
共 15 条
[11]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[12]  
Greszler T., 2006, GEN MOT CORP
[13]  
James B. D., 2010, GS10F009J DTI
[14]  
Steinbach A.J., 2007, ECS T, V11, P889
[15]   Kinetics of Hydrogen Oxidation and Hydrogen Evolution Reactions on Nanostructured Thin-Film Platinum Alloy Catalyst [J].
Wang, X. ;
Ahluwalia, R. K. ;
Steinbach, A. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) :F251-F261