LIMIT CYCLES FOR SOME ABEL EQUATIONS HAVING COEFFICIENTS WITHOUT FIXED SIGNS

被引:28
作者
Bravo, J. L. [1 ]
Fernandez, M. [1 ]
Gasull, A. [2 ]
机构
[1] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2009年 / 19卷 / 11期
关键词
Abel equation; periodic solution; limit cycle; TWO-DIMENSIONAL SYSTEMS; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; CUBIC SYSTEMS; NUMBER; UNIQUENESS;
D O I
10.1142/S0218127409025195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that some 2 pi-periodic generalized Abel equations of the form x' = A(t)x(n) + B(t)x(m) + C(t)x, with n not equal m and n, m >= 2 have at most three limit cycles. The novelty of our result is that, in contrast with other results of the literature, our hypotheses allow the functions A, B, and C to change sign. Finally we study in more detail the Abel equation x' = A(t)x(3) + B(t)x(2), where the functions A and B are trigonometric polynomials of degree one.
引用
收藏
页码:3869 / 3876
页数:8
相关论文
共 17 条
  • [1] THE NUMBER OF LIMIT CYCLES FOR GENERALIZED ABEL EQUATIONS WITH PERIODIC COEFFICIENTS OF DEFINITE SIGN
    Alvarez, Amelia
    Bravo, Jose-Luis
    Fernandez, Manuel
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1493 - 1501
  • [2] Lower bounds for the number of limit cycles of trigonometric Abel equations
    Alvarez, M. J.
    Gasull, A.
    Yu, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 682 - 693
  • [3] A new uniqueness criterion for the number of periodic orbits of Abel equations
    Alvarez, M. J.
    Gasull, A.
    Giacomini, H.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) : 161 - 176
  • [4] Uniqueness of limit cycles for polynomial first-order differential equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (01) : 168 - 189
  • [5] NONAUTONOMOUS EQUATIONS RELATED TO POLYNOMIAL TWO-DIMENSIONAL SYSTEMS
    ALWASH, MAM
    LLOYD, NG
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 105 : 129 - 152
  • [6] ANDRONOV AA, 1973, ISRAEL PROGRAM SCI T, V23
  • [7] Abel-like differential equations with no periodic solutions
    Bravo, J. L.
    Torregrosa, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 931 - 942
  • [8] LIMIT-CYCLES OF A CLASS OF POLYNOMIAL SYSTEMS
    CARBONELL, M
    LLIBRE, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 109 : 187 - 199
  • [9] CHERKAS L.A., 1976, Diff. Eq, V5, P666
  • [10] Cubic systems and Abel equations
    Devlin, J
    Lloyd, NG
    Pearson, JM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 147 (02) : 435 - 454