Merging Fragments of Classical Logic

被引:2
作者
Caleiro, Carlos [1 ]
Marcelino, Sergio [1 ]
Marcos, Joao [2 ,3 ]
机构
[1] Univ Lisbon, IST, Dept Math, Lisbon, Portugal
[2] Univ Fed Rio Grande do Norte, LoLITA, Natal, RN, Brazil
[3] Univ Fed Rio Grande do Norte, DIMAp, Natal, RN, Brazil
来源
FRONTIERS OF COMBINING SYSTEMS (FROCOS 2017) | 2017年 / 10483卷
关键词
COMPLEXITY;
D O I
10.1007/978-3-319-66167-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the possibility of extending the nonfunctionally complete logic of a collection of Boolean connectives by the addition of further Boolean connectives that make the resulting set of connectives functionally complete. More precisely, we will be interested in checking whether an axiomatization for Classical Propositional Logic may be produced by merging Hilbert-style calculi for two disjoint incomplete fragments of it. We will prove that the answer to that problem is a negative one, unless one of the components includes only top-like connectives.
引用
收藏
页码:298 / 315
页数:18
相关论文
共 13 条
  • [1] [Anonymous], 1941, The Two-Valued Iterative Systems ofMathematical Logic. (AM-5)
  • [2] [Anonymous], THE CONNECTIVES
  • [3] The complexity of propositional implication
    Beyersdorff, Olaf
    Meier, Arne
    Thomas, Michael
    Vollmer, Heribert
    [J]. INFORMATION PROCESSING LETTERS, 2009, 109 (18) : 1071 - 1077
  • [4] Caleiro C., 2005, HDB PHILOS LOGIC, V13, P123
  • [5] From Fibring to Cryptofibring. A Solution to the Collapsing Problem
    Caleiro, Carlos
    Ramos, Jaime
    [J]. LOGICA UNIVERSALIS, 2007, 1 (01) : 71 - 92
  • [6] Lau D, 2006, FUNCTION ALGEBRAS FI, DOI [10.1007/3-540-36023-9, DOI 10.1007/3-540-36023-9]
  • [7] On the characterization of fibred logics, with applications to conservativity and finite-valuedness
    Marcelino, Sergio
    Caleiro, Carlos
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2017, 27 (07) : 2063 - 2088
  • [8] Decidability and complexity of fibred logics without shared connectives
    Marcelino, Sergio
    Caleiro, Carlos
    [J]. LOGIC JOURNAL OF THE IGPL, 2016, 24 (05) : 673 - 707
  • [9] Rautenberg W., 1981, STUDIA LOGICA, V40, P315, DOI DOI 10.1007/BF00401653
  • [10] Optimal satisfiability for propositional calculi and constraint satisfaction problems
    Reith, S
    Vollmer, H
    [J]. INFORMATION AND COMPUTATION, 2003, 186 (01) : 1 - 19