Anti-Ramsey properties of random graphs

被引:4
作者
Bohman, Tom [1 ]
Frieze, Alan [1 ]
Pikhurko, Oleg [1 ]
Smyth, Cliff [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Ramsey theory; Random graphs;
D O I
10.1016/j.jctb.2009.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a coloring of the edge set of a graph G a b-bounded coloring if no color is used more than b times. We say that a subset of the edges of G is rainbow if each edge is of a different color. A graph has property A(b, H) if every b-bounded coloring of its edges has a rainbow copy of H. We estimate the threshold for the random graph G(n,p) to have property A(b, H). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 50 条
  • [31] A Short Proof of the Random Ramsey Theorem
    Nenadov, Rajko
    Steger, Angelika
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (01) : 130 - 144
  • [32] Ramsey numbers for multiple copies of sparse graphs
    Sulser, Aurelio
    Trujic, Milos
    JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 843 - 870
  • [33] DIRECTED GRAPHS WITH LOWER ORIENTATION RAMSEY THRESHOLDS
    Barros, Gabriel Ferreira
    Cavalar, Bruno Pasqualotto
    Kohayakawa, Yoshiharu
    Mota, Guilherme Oliveira
    Naia, Tassio
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (04) : 3607 - 3619
  • [34] On the Ramsey number of sparse 3-graphs
    Nagle, Brendan
    Olsen, Sayaka
    Roedl, Vojtech
    Schacht, Mathias
    GRAPHS AND COMBINATORICS, 2008, 24 (03) : 205 - 228
  • [35] On Anti-stochastic Properties of Unlabeled Graphs
    Kiselev, Sergei
    Kupavskii, Andrey
    Verbitsky, Oleg
    Zhukovskii, Maksim
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022), 2022, 13453 : 300 - 312
  • [36] On the Ramsey Number of Sparse 3-Graphs
    Brendan Nagle
    Sayaka Olsen
    Vojtěch Rödl
    Mathias Schacht
    Graphs and Combinatorics, 2008, 24 : 205 - 228
  • [37] Calculating Ramsey Numbers by Partitioning Colored Graphs
    Pokrovskiy, Alexey
    JOURNAL OF GRAPH THEORY, 2017, 84 (04) : 477 - 500
  • [39] RANDOM GRAPHS WITH A RANDOM BIJECTION
    Anbo, Yuki
    TSUKUBA JOURNAL OF MATHEMATICS, 2011, 35 (01) : 143 - 151
  • [40] Random triangles in random graphs
    Heckel, Annika
    RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (04) : 616 - 621