Recovery of acetate by anion exchange with consecutive CO2-expanded methanol desorption: A model-based approach

被引:7
作者
Cabrera-Rodriguez, Carlos I. [1 ]
Cartin-Caballero, Carlos M. [1 ,2 ]
Platarou, Evgenia [1 ]
de Weerd, Florence A. [1 ]
van der Wielen, Luuk A. M. [1 ,3 ]
Straathof, Adrie J. J. [1 ]
机构
[1] Delft Univ Technol, Dept Biotechnol, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Univ Nacl Costa Rica, Escuela Quim, Heredia, Costa Rica
[3] Univ Limerick, Bernal Inst, Limerick, Ireland
关键词
Acetate; Anion exchange; Desorption; CO2-expanded methanol; Ion exchange modeling; ION-EXCHANGE; CARBOXYLIC-ACIDS; ORGANIC-ACIDS; ACETIC-ACID; ADSORPTION; EQUILIBRIUM; ADSORPTION/DESORPTION; RESINS; PK(A); WATER;
D O I
10.1016/j.seppur.2018.03.068
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Production of bio-based acetate is commonly hindered by the high costs of the downstream processing. In this paper, a model is developed to describe a new method that recovers acetate salts using anion exchange resins, and subsequently desorbs and upgrades them using CO2-expanded alcohol. The model consists of equilibrium parameters for both the adsorption and desorption step. The calculated parameters are: for the adsorption K-Cl-(Ac-) = 0.125, K-Cl-(HCO3-) = 0.206 and K-OV,K-HAC = 0.674mol/kg(resin)/mol/kg(solution), and for the desorption pK(MeCO3-)(Ac-) = 3.71. The maximum experimental concentration of acetic acid obtained in CO2-expanded methanol is 0.427 mol/kg (20 g/L-MeOH) at an operating pressure of 31 bar. The model represents the expected trends for all species, and can be used to design a multicolumn system for the recovery and upgrading of carboxylates.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 30 条
[1]   Modeling ion exchange equilibrium: Analysis of exchanger phase non-ideality [J].
Aniceto, Jose P. S. ;
Cardoso, Simao P. ;
Faria, Tiago L. ;
Lito, Patricia F. ;
Silva, Carlos M. .
DESALINATION, 2012, 290 :43-53
[2]  
[Anonymous], 1974, Journal of Research of the U.S. Geological Survey, DOI DOI 10.1016/J.SEPPUR.2015.02.042
[3]  
[Anonymous], DOW USING ION EXCHAN
[4]   Dark fermentation biorefinery in the present and future (bio)chemical industry [J].
Bastidas-Oyanedel, Juan-Rodrigo ;
Bonk, Fabian ;
Thomsen, Mette Hedegaard ;
Schmidt, Jens Ejbye .
REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY, 2015, 14 (03) :473-498
[5]   Esters production via carboxylates from anaerobic paper mill wastewater treatment [J].
Cabrera-Rodriguez, Carlos I. ;
Moreno-Gonzalez, Monica ;
de Weerd, Florence A. ;
Viswanathan, Vidhvath ;
van der Wielen, Luuk A. M. ;
Straathof, Adrie J. J. .
BIORESOURCE TECHNOLOGY, 2017, 237 :186-192
[6]   Recovery and esterification of aqueous carboxylates by using CO2-expanded alcohols with anion exchange [J].
Cabrera-Rodriguez, Carlos I. ;
Paltrinieri, Laura ;
de Smet, Louis C. P. M. ;
van der Wielen, Luuk A. M. ;
Straathof, Adrie J. J. .
GREEN CHEMISTRY, 2017, 19 (03) :729-738
[7]   Separation and Catalysis of Carboxylates: Byproduct Reduction during the Alkylation with Dimethyl Carbonate [J].
Cabrera-Rodriguez, Carlos I. ;
van der Wielen, Luuk A. M. ;
Straathof, Adrie J. J. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (44) :10964-10973
[8]  
Carta G., 2010, PROTEIN CHROMATOGRAP, P125, DOI 10.1002/9783527630158.ch4
[9]   Biobased organic acids production by metabolically engineered microorganisms [J].
Chen, Yun ;
Nielsen, Jens .
CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 :165-172
[10]  
Crini G., 2010, SORPTION PROCESSES P