Affine self-similar solutions of the affine curve shortening flow I: The degenerate case

被引:1
作者
Yu, Chengjie [1 ]
Zhao, Feifei [2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] North China Inst Aerosp Engn, Sch Liberal Arts & Sci, Langfang 065000, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-similar solution; Affine transformation; Curve shortening flow;
D O I
10.1016/j.jde.2021.03.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider affine self-similar solutions for the affine curve shortening flow in the Euclidean plane. We obtain the equations of all affine self-similar solutions up to affine transformations and solve the equations or give descriptions of the solutions for the degenerate case. Some new special solutions for the affine curve shortening flow are found. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:686 / 713
页数:28
相关论文
共 23 条
  • [1] ABRESCH U, 1986, J DIFFER GEOM, V23, P175
  • [2] The zoo of solitons for curve shortening in Rn
    Altschuler, Dylan J.
    Altschuler, Steven J.
    Angenent, Sigurd B.
    Wu, Lani F.
    [J]. NONLINEARITY, 2013, 26 (05) : 1189 - 1226
  • [3] ALTSCHULER SJ, 1991, J DIFFER GEOM, V34, P491
  • [4] Andrews B, 1996, J DIFFER GEOM, V43, P207
  • [5] Evolving convex curves
    Andrews, B
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 7 (04) : 315 - 371
  • [6] Andrews B, 2003, J AM MATH SOC, V16, P443
  • [7] Curvature bound for curve shortening flow via distance comparison and a direct proof of Grayson's theorem
    Andrews, Ben
    Bryan, Paul
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 653 : 179 - 187
  • [8] ANGENENT S, 1991, J DIFFER GEOM, V33, P601
  • [9] On the affine heat equation for non-convex curves
    Angenent, S
    Sapiro, G
    Tannenbaum, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) : 601 - 634
  • [10] [Anonymous], 2001, CURVE SHORTENING PRO