Analysis of trapping sites for deuterium in W-Cr-Y SMART alloy

被引:4
作者
Harutyunyan, Z. [1 ]
Gasparyan, Yu. [1 ]
Efimov, V. [1 ]
Litnovsky, A. [2 ]
Klein, F. [2 ]
Pisarev, A. [1 ]
Coenen, J. W. [2 ]
Linsmeier, Ch. [2 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Kashirskoe Shosse 31, Moscow 115409, Russia
[2] Forschungszentrum Julich, Inst Energie & Klimaforsch, D-52425 Julich, Germany
基金
俄罗斯科学基金会;
关键词
Smart tungsten alloys; Helium; Deuterium; Thermal desorption spectroscopy; Plasma facing materials; Nuclear fusion; PASSIVATING TUNGSTEN ALLOYS; PLASMA-FACING MATERIALS; THERMAL-DESORPTION; FUSION DEMO; SAFETY; RETENTION; ISSUES; HYDROGEN; IMPURITIES; TRITIUM;
D O I
10.1016/j.vacuum.2022.110956
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deuterium (D) retention in tungsten-chromium-yttrium (W-Cr-Y) alloy depending on the irradiation fluence of 1019(-5) x 10(21) D/m(2) at various sample temperatures in the range of 300-900 K was investigated using in-situ thermal desorption spectroscopy (TDS). The irradiation was carried out using 2 keV D-3(+) ions (670eV/D). An increased D retention compared to that of pure polycrystalline W and additional high-temperature peaks were observed in TDS. The de-trapping energy of 2.21 +/- 0.05 eV for these traps was determined by the Kissinger method using the series of experiment with different heating rates. The total D retention dropped down at elevated irradiation temperatures and was rather small at 900 K, but has a local maximum at about 700 K.
引用
收藏
页数:6
相关论文
共 48 条
[41]   Resolving safety issues for a demonstration fusion power plant [J].
Taylor, Neill ;
Ciattaglia, Sergio ;
Boyer, Helen ;
Coombs, Dave ;
Jin, Xue Zhou ;
Liger, Karine ;
Mora, Juan Carlos ;
Mazzini, Guido ;
Pinna, Tonio ;
Urbonavicius, Egidijus .
FUSION ENGINEERING AND DESIGN, 2017, 124 :1177-1180
[42]   Lessons learnt from ITER safety & licensing for DEMO and future nuclear fusion facilities [J].
Taylor, Neill ;
Cortes, Pierre .
FUSION ENGINEERING AND DESIGN, 2014, 89 (9-10) :1995-2000
[43]   Deuterium retention in tungsten at fluences of up to 1026 D+/m2 using D+ ion beams [J].
Tian, Z. ;
Davis, J. W. ;
Haasz, A. A. .
JOURNAL OF NUCLEAR MATERIALS, 2010, 399 (01) :101-107
[44]   Study on decay heat removal of compact ITER [J].
Tsuru, D ;
Neyatani, Y ;
Araki, T ;
Nomoto, K ;
O'Hira, S ;
Maruo, T ;
Hashimoto, M ;
Hada, K ;
Tada, E .
FUSION ENGINEERING AND DESIGN, 2001, 58-59 :985-989
[45]   HYDROGEN-EXCHANGE WITH VOIDS IN TUNGSTEN OBSERVED WITH TDS AND PA [J].
VANVEEN, A ;
FILIUS, HA ;
DEVRIES, J ;
BIJKERK, KR ;
ROZING, GJ ;
SEGERS, D .
JOURNAL OF NUCLEAR MATERIALS, 1988, 155 (pt B) :1113-1117
[46]   Development of yttrium-containing self-passivating tungsten alloys for future fusion power plants [J].
Wegener, T. ;
Klein, F. ;
Litnovsky, A. ;
Rasinski, M. ;
Brinkmann, J. ;
Koch, F. ;
Linsmeier, Ch. .
NUCLEAR MATERIALS AND ENERGY, 2016, 9 :394-398
[47]   Development and analyses of self-passivating tungsten alloys for DEMO accidental conditions [J].
Wegener, Tobias ;
Klein, Felix ;
Litnoysky, Andrey ;
Rasinski, Marcin ;
Brinkmann, Jens ;
Koch, Freimut ;
Linsmeier, Christian .
FUSION ENGINEERING AND DESIGN, 2017, 124 :183-186
[48]   Experimental determination of the deuterium binding energy with vacancies in tungsten [J].
Zibrov, M. ;
Ryabtsev, S. ;
Gasparyan, Yu. ;
Pisarev, A. .
JOURNAL OF NUCLEAR MATERIALS, 2016, 477 :292-297