Analysis of trapping sites for deuterium in W-Cr-Y SMART alloy

被引:4
作者
Harutyunyan, Z. [1 ]
Gasparyan, Yu. [1 ]
Efimov, V. [1 ]
Litnovsky, A. [2 ]
Klein, F. [2 ]
Pisarev, A. [1 ]
Coenen, J. W. [2 ]
Linsmeier, Ch. [2 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Kashirskoe Shosse 31, Moscow 115409, Russia
[2] Forschungszentrum Julich, Inst Energie & Klimaforsch, D-52425 Julich, Germany
基金
俄罗斯科学基金会;
关键词
Smart tungsten alloys; Helium; Deuterium; Thermal desorption spectroscopy; Plasma facing materials; Nuclear fusion; PASSIVATING TUNGSTEN ALLOYS; PLASMA-FACING MATERIALS; THERMAL-DESORPTION; FUSION DEMO; SAFETY; RETENTION; ISSUES; HYDROGEN; IMPURITIES; TRITIUM;
D O I
10.1016/j.vacuum.2022.110956
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deuterium (D) retention in tungsten-chromium-yttrium (W-Cr-Y) alloy depending on the irradiation fluence of 1019(-5) x 10(21) D/m(2) at various sample temperatures in the range of 300-900 K was investigated using in-situ thermal desorption spectroscopy (TDS). The irradiation was carried out using 2 keV D-3(+) ions (670eV/D). An increased D retention compared to that of pure polycrystalline W and additional high-temperature peaks were observed in TDS. The de-trapping energy of 2.21 +/- 0.05 eV for these traps was determined by the Kissinger method using the series of experiment with different heating rates. The total D retention dropped down at elevated irradiation temperatures and was rather small at 900 K, but has a local maximum at about 700 K.
引用
收藏
页数:6
相关论文
共 48 条
[1]   Hydrogen isotope retention in plasma-facing materials: review of recent experimental results [J].
Alimov, V. Kh ;
Roth, J. .
PHYSICA SCRIPTA, 2007, T128 :6-13
[2]   Issues and strategies for DEMO in-vessel component integration [J].
Bachmann, C. ;
Arbeiter, F. ;
Boccaccini, L. V. ;
Coleman, M. ;
Federici, G. ;
Fischer, U. ;
Kemp, R. ;
Maviglia, F. ;
Mazzone, G. ;
Pereslavtsev, P. ;
Roccella, R. ;
Taylor, N. ;
Villari, R. ;
Villone, F. ;
Wenninger, R. ;
You, J. -H. .
FUSION ENGINEERING AND DESIGN, 2016, 112 :527-534
[3]  
ELEVELD H, 1992, J NUCL MATER, V191, P433
[4]   Growth of epitaxial tungsten oxide nanorods [J].
Gillet, M ;
Delamare, R ;
Gillet, E .
JOURNAL OF CRYSTAL GROWTH, 2005, 279 (1-2) :93-99
[5]   Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments [J].
Guillon, Olivier ;
Gonzalez-Julian, Jesus ;
Dargatz, Benjamin ;
Kessel, Tobias ;
Schierning, Gabi ;
Raethel, Jan ;
Herrmann, Mathias .
ADVANCED ENGINEERING MATERIALS, 2014, 16 (07) :830-849
[6]   Deuterium trapping in the subsurface layer of tungsten pre-irradiated with helium ions [J].
Harutyunyan, Z. ;
Gasparyan, Yu. ;
Ryabtsev, S. ;
Efimov, V. ;
Ogorodnikova, O. ;
Pisarev, A. ;
Kanashenko, S. .
JOURNAL OF NUCLEAR MATERIALS, 2021, 548
[7]   Retention of Deuterium in the Surface Layers of Tungsten Preliminarily Irradiated with Helium Ions [J].
Harutyunyan Z.R. ;
Gasparyan Y.M. ;
Efimov V.S. ;
Ryabtsev S.A. ;
Pisarev A.A. .
Bulletin of the Russian Academy of Sciences: Physics, 2020, 84 (06) :727-731
[8]   PLASMA FACING MATERIALS LIFETIME IN STEADY-STATE DEMO OPERATION [J].
Igitkhanov, Yu. ;
Bazylev, B. ;
Landman, I. .
FUSION SCIENCE AND TECHNOLOGY, 2013, 64 (02) :245-249
[9]   Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion [J].
Johnson, Donald F. ;
Carter, Emily A. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (02) :315-327
[10]   REACTION KINETICS IN DIFFERENTIAL THERMAL ANALYSIS [J].
KISSINGER, HE .
ANALYTICAL CHEMISTRY, 1957, 29 (11) :1702-1706