NCNet: Deep Learning Network Models for Predicting Function of Non-Coding DNA (vol 10, 432, 2019)

被引:1
作者
Zhang, Hanyu [1 ,2 ]
Hung, Che-Lun [3 ,4 ,5 ,6 ]
Liu, Meiyuan [7 ]
Hu, Xiaoye [7 ]
Lin, Yi-Yang [6 ]
机构
[1] Providence Univ, Coll Comp & Informat, Taichung, Taiwan
[2] Univ Paris Saclay, Ecole Cent Supelec, Lab MICS, Gif Sur Yvette, France
[3] Chang Gung Univ, Dept & Grad Inst Comp Sci & Informat Engn, Taoyuan, Taiwan
[4] Chang Gung Mem Hosp, Div Rheumatol Allergy & Immunol, Taoyuan, Taiwan
[5] Chang Gung Univ, AI Innovat Res Ctr, Taoyuan, Taiwan
[6] Providence Univ, Dept Comp Sci & Commun Engn, Taichung, Taiwan
[7] Guangzhou Med Univ, Affiliated Canc Hosp & Inst, Guangzhou, Guangdong, Peoples R China
关键词
Non-coding DNA; residual learning; LSTM; sequence to sequence learning; deep learning;
D O I
10.3389/fgene.2019.00923
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
引用
收藏
页数:1
相关论文
共 1 条
[1]   NCNet: Deep Learning Network Models for Predicting Function o Non-coding DNA [J].
Zhang, Hanyu ;
Hung, Che-Lun ;
Liu, Meiyuan ;
Hu, Xiaoye ;
Lin, Yi-Yang .
FRONTIERS IN GENETICS, 2019, 10